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1. Introduction

The research presented in this dissertation explores interactive techniques

designed to overcome the limitations of current conventional search tools

as primary access points to information, and to support a wider range

of information-seeking behaviors, including exploratory search, serendip-

ity and orientation. This first chapter introduces the research context,

establishes the objective and scope of the dissertation and the research

questions. It then provides an overview of the research contributions from

eight publications that originated from the research process. Finally it

previews the structure of this work.

1.1 Research Context

The rise of ubiquitous connectivity has dramatically changed our environ-

ment, providing access to ever-growing amounts of information, shifting

our economy and giving birth to whole new industries. The web is no

longer comparable to a very large library but has become the primary

place of growth, significance, and struggle in our culture and society

[Dörk et al., 2011]. And in that environment, search engines have become

our de facto point of access and way of finding, filtering and discovering

information. Their centrality in our information practices and pervasive-

ness in our daily lives makes them infrastructure-like, i.e. as important as

they are invisible [König and Rasch, 2014]. For these reasons, and while

we must acknowledge their usefulness, it is essential to also address their

limitations, which are both ethical and technical.

The first ethical limitation pertains to their black-box status. Search

engines do not reveal the way they function. We rely on their artificial and

arbitrary sense of relevance to sample and rank information of interest,

and ultimately be given access to it, with no visibility regarding what has

9



Introduction

Figure 1.1. Categorization of search activities falling under lookup and exploratory search
[Marchionini, 2006].

been left out and no further explanation. The second ethical limitation has

to do with the documented impossibility, in spite of their claims, for search

engines to be neutral. The simple fact that they are not a public service,

but unregulated commercial operations in charge of filtering and ranking

information introduces a bias [Lewandowski, 2015]. Furthermore, results

to a given query will differ from one user to another as the consequence of

some personalization process, preventing any form of objectivity. The third

ethical limitation lies in the discrepancy between the perceived simplicity

of use, and the actual level of skills required both in formulating effective

queries and analysis of returned search results [König and Rasch, 2014].

This results in inequalities regarding the quality of available information,

making users potentially vulnerable to filter bubbles [Pariser, 2011] and

various interests.

The core issue regarding the three limitations above lie in the lack of

control we have over the search engines, and the passive role in which

the user is encouraged, which verifies in the type of search behavior fos-

tered by search engines. Marchionini describes fundamental differences

between simple search tasks, or Lookup, e.g., fact retrieval or known-

item search, and more complex tasks, described as Exploratory Search

[Marchionini, 2006]. Exploratory search tasks differ from lookup in that

users engage in them without having a predetermined goal in mind, for

10



Introduction

example when looking for inspiration or wanting to know more about a

given topic. Such tasks, having no predetermined end, become dynamic

and potentially long term, implying information needs and strategies that

shift and evolve as users learn, discover new information and become

familiar with the information space1 [Capra et al., 2007].

As it is shown in Figure 1.1, exploratory search is not to be reduced to a

single type of search activity, but encompasses a wide array of information

related activities.

Neglecting ethical concerns mentioned above, current search engines

offer an incredibly convenient support for lookup tasks, answering all of

our questions in a few milliseconds. However, the lack of support for more

complex search tasks contributes to maintaining users in a passive con-

sumer role instead of rewarding active informational behavior. I describe

these shortcomings as the following technical limitations:

First, formulating and refining textual queries is known to be difficult.

Exploration has users go into information areas with which they are unfa-

miliar. A user-defined query being built upon pre-acquired knowledge, it

creates little opportunity for discovery [White and Roth, 2009]. Further-

more, as the open-ended nature of exploration makes querying an iterative

process, that difficulty is made all the more salient.

Second, conventional result lists offer limited support in understanding

the related information space. Not only are a few search results, com-

monly referred to as ten blue links, too narrow an access point to offer

any sensible overview of available material related to any given query,

but nothing tells the user how one result relates to another, or how the

ten most relevant results are representative of the information space

[Balasubramanian and Cucerzan, 2010]. In other words, are these results

redundant, or do they offer complementary directions with respect to the

topic at hand? For now, the underlying structure of the data remains

hidden, while only an evaluation of individual results can provide that

kind of insights.

1Throughout this dissertation, I use Information Space to describe a set of infor-
mation objects. Through the spatial aspect, I consider the numerous relationships
that potentially link these objects. Among possible relationships, semantic re-
latedness provides a convenient metric distance between objects. Guex provides
affordable preliminary definitions of graph theory, which tells us a graph is qual-
ified as spatial when its nodes exist in a metric space, i.e., there is a distance
between them [Guex, 2016]. The consideration of information as a space is an
intrinsic consequence of applying the notion of exploration to information, which
suggests paths between points to be uncovered

11
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Third, search is considered and supported as an ephemeral single-user

activity. As a result, there is very limited support for keeping track of

encountered information or to take advantage of collaborative work. Such

limitations make information exploration a dissociated experience, with

many missed opportunities to support the user and help her link and make

sense2 of new information.

I advocate instead for greater user awareness and control as well as

increased responsibility for what information is encountered. The research

presented in this dissertation explores interactive techniques designed to

overcome the above-mentioned limitations, and demarcate an alternative

paradigm for information practices. I summarize that goal as making infor-

mation explorable, and define explorability as the quality of physical space

that enables humans to become acquainted with it through movement and

exploration. An explorable information space implies situated information,

which enables orientation:

- Choosing a direction instead of formulating queries.

- Meaningful overviews instead of narrow looks.

- Persistent spaces allowing growing familiarity, sense-making, and col-

laboration instead of quick disposable search sessions.

The promise of an information space with such properties is carried by

the notion of entity. In information science fields, entities are data elements

and objects of interest [Ware, 2012], and constitute references to real-world

objects or concepts (e.g., persons, places, movies, topics, and products)

[Miliaraki et al., 2015]. “Tom Hanks (actor)”, who plays in “Forrest Gump

(movie)” can both be entities, as well as “the entire cast of Forrest Gump”.

Entities offer a flexible way of structuring concepts in a way that is relevant

to a context or the task at hand. Entities are structured through their

relationships. For example, the entity “Tom Hanks (actor)” and the entity

2Sense-making is a largely interdisciplinary concept that can be defined as the pro-
cess through which people give meaning to their experience [Klein et al., 2006].
In the context of this dissertation, I consider the definition of Russel and col-
leagues, who define sense-making as the process of searching for a representa-
tion and encoding data in that representation to answer task-specific questions
[Russell et al., 1993]. Through several empirical studies, they were able to pro-
vide an operational description of sense-making as: (1) A retrospective analysis
of events, (2) Guiding information exploration, (3) A social activity fostering the
finding of a common ground, (4) An open-ended process that will consume any
amount of invested time resource. Sense-making is not to be confused with mental
modeling, i.e. a memory representation of linked concepts and principles, or with
situation awareness, i.e. a state of knowledge of current data elements, allowing
inferences, predictions, and decision making.
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“Forrest Gump (movie)” are linked via a relationship of the type "stars in".

Entity-linking relationships are numerous. They can be causal or temporal

[Ware, 2012]. Together, they form a graph in which entities are nodes and

relationships are the edges3. While conventional databases store data as

lists of items described by a standardized set of features, entity graphs

(also known as knowledge graphs or knowledge bases) define each item as

a collection of directed links (or typed relationship) to other items. Such

data structure allows algorithms to solve complex queries. For example:

“Who is the inventor of the paperclip?” can be answered by identifying

paperclip as an entity, and inventor of as a type of relationship. Given a

sufficiently comprehensive graph of entities, the answer lies at the end of

the identified path).

Figure 1.2. The notion of information space is often implicit. Semantic adjacencies exist
at a conceptual level, e.g., through the relatedness of the topics discussed.
Once available information is meaningfully structured, these conceptual links
become explicit and can be made visible and interactive. The information
space becomes like a multidimensional medium.

Entity search is investigated by both Information Retrieval and Semantic

Web research communities. In Information Retrieval, entity search is done

primarily through statistical methods. Such methods identify entities that

coexist within a common content, e.g., an article, through which it infers

whether and how they are related. Similar methods allow identifying

of entities that are relevant to a given query [Balog, 2018]. Information

3Such graphs are commonly used in the Digital Humanities, for exam-
ple as a means of analysis of a character network in fictional work
[Rochat and Triclot, 2017].
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Retrieval methods already yield results and are successfully integrated in

commonly used search algorithms to improve search results.

Within the Semantic Web community, entity search is mainly tackled

as an information structure and path finding problem. Such approach

implies creation of a global entity database, or knowledge base, to which

point entities referenced in a content [Berners-Lee et al., 2001]. The goal

of the Semantic Web, infusing common content on the web with meaning

that is simultaneously legible by humans and machines, is ambitious and

difficult, and not yet realized [Balog et al., 2010], but it promises plenty of

opportunities, not only in the way complex textual queries can be solved,

but in how we will interact with information.

Once available information is meaningfully structured, the information

space becomes a multidimensional medium ready to be unfolded as explor-

ers pull its threads in various directions and discover content according to

their needs, inspiration or chance (Figure 1.2). Utilizing entities interac-

tively for information exploration requires substantial thinking about their

affordances4 and visualization techniques, to come up with fundamental

principles that are generalizable to, and across, tasks and search contexts,

e.g., academic literature, social media or movies.

1.2 Objective and Scope

The main challenge addressed by this research concerns the state of ex-

plorability of the information space, which I intend to address through the

development of entity-oriented interaction and visualization techniques.

The goal of enabling explorability in the information space consists of

turning a highly abstract activity into an embodied and situated experience.

In this context, Suchman’s parallel of Human-Machine Interactions as a

navigation issue [Suchman, 2007] becomes quite literal, and her model

describing the process of meaningful human actions provides us with

a useful way to structure the present research in how to support them.

Therefore, exploring the design space5 of entity affordances supporting
4An affordance is a possibility for action enabled by an object. A ball affords being
picked up or thrown. A button affords being pushed, a hyperlink, being clicked. In
the case of physical objects, most affordances are visible, as they are constrained
by their physical properties, e.g. a small or visibly light object can usually be
picked up, an empty container can be filled [Norman, 2013]. In the digital realm,
the disconnection between perceived properties of an object and its utility, makes
it a central challenge in user interface design [Abras et al., 2004].
5Design space refers to at least three completely different concepts
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information exploration required addressing the following:

1. Enabling the technical means for action, i.e., providing a direction to the

exploration. I refer to the resulting property of explorability as Direction.

2. Enabling the means to situate such actions allowing for planning and

accounting. I refer to the resulting property as pertaining to Orientation.

3. Establishing the spatial consistency required for 1. and 2., i.e., bridging

gaps across heterogeneous information sources and exploration environ-

ments. I refer to the resulting property as pertaining to Continuity.

I use these three properties of explorability as design drivers in our

various attempts, which together provide a comprehensive approach to the

research goal. The following expands on their application.

1. Direction

Search in the information space is a common process through which ele-

ments are made retrievable or accessible. In lookup tasks, as the user’s

intent is clearly defined, search is aimed at an endpoint, e.g. an answer

to a question. In exploratory settings, users’ intents are less clearly de-

fined and more complex, thus search becomes the process of providing a

direction to the exploration. Techniques involving interaction with enti-

ties have been investigated [Miliaraki et al., 2015] but are very limited in

addressing a user’s search intent, especially when compared with typed

queries in conventional search engines. Therefore to address this property

of explorability, I needed to investigate the design space of entity-based

affordances for search, with the objective of developing and evaluating

techniques that would yield search results of a quality at least comparable

to conventional search methods, for effective use in exploratory settings.

2. Orientation

Orientation refers to the location of something in relation to its surround-

ings. In terms of ability, it refers to the prerequisites for navigation, or one’s

capability to situate oneself with respects to one’s origin or past locations,

therefore enabling decision for future directions. The abstraction of infor-

mation as a space makes that notion somewhat fuzzy but can be described

[Sanders and Westerlund, 2011]. In the context of this dissertation, I define it as:
The imaginary set of all possible solutions to a sub-constrained problem.
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as having a sense of overview and direction [Dörk et al., 2011]. Orien-

tation is simply not supported in commonly available ways of accessing

information. Conventional search engines respond to users’ queries with

a short selection of relevant items with no further indication on how one

result relates to others or to the larger context, providing potentially redun-

dant coverage of the topic at hand [Balasubramanian and Cucerzan, 2010].

While interactive visualization methods aimed at supporting sense-making

exist and have been investigated [Stasko et al., 2008, Chau et al., 2011],

they primarily target professionally trained analysts and are explicitly

designed to support problem-solving through an additive approach of pro-

viding numerous views and panels to complement each other and achieve

an exhaustive understanding of a complex problem.

Addressing support for orientation in the context of this research requires

instead developing techniques for visualizing information that enable

a user to grow familiar with information areas of her choice, fostering

insights but also serendipity, through visualization and manipulation of

entities.

3. Continuity

Continuity ensures that all parts of space communicate in a consis-

tent way. Information exploration is potentially long-term, collabora-

tive, and often relies on heterogeneous sources for insights and learning

[White and Roth, 2009], including active search, serendipitous finds online

and offline, conversations, etc. However, the lack of consistent and direct

communication between various sources of information results in a burden

for the user who must overly rely on her memory to make sense of encoun-

tered information and get a sense of context out of it, which creates few

opportunities for insight and contributes to unnecessary cognitive load.

I describe this problem as pertaining to continuity in the information

space, among which the most salient challenge areas are:

1. Navigation through multiple data sets with incompatible structures.

2. Extracting entities beyond dedicated search tasks, and from any

activity pertaining to the exploration, e.g., conversation, reading, writing.

Usability principles related to explorability have been proposed by Dörk in

terms of orientation, visual momentum and serendipity [Dörk et al., 2011].

Both sets of principles differ in that Dörk’s is formulated as applied fea-

tures of exploration support, while mine attempts to define a theoretical
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representation of an explorable information space. The principle of orien-

tation is shared in both proposals. Visual momentum matches closely my

proposed principle of direction, but focuses on interface features, such as

animated transitions, zoomable interfaces or detail-on-demand, while I de-

scribe the principle of Direction more generally. Finally, when considering

properties of an explorable information space, I believe opportunities for

serendipity should be an intrinsic result of being able to orient and direct

oneself to reveal outlying or unusual results, defeating the need for its

implementation as an added feature. For that reason, I propose instead

the principle of continuity, which allows to further generalize the goal of

an explorable information space.

These three properties of explorability do not exhaustively address all

aspects of the main research problem but provide a comprehensive explo-

ration of the intended design space as they demarcate the research so that

it is possible to conduct within the scope of a doctoral thesis.

The research presented in this dissertation is the result of a highly multi-

disciplinary collaboration, spanning the fields of Human-Computer Inter-

action, Information Retrieval, and Interaction Design. The focus of this

research can be described as Interaction Design applied to Entity Search.

This dissertation does not address Semantic Web challenges or problems

pertaining to the organization of information. It anticipates the availabil-

ity of entity-oriented information, ideally in the form of an independent

index of the web [Lewandowski, 2014], and utilizes Information Retrieval

methods in the development of prototypes. Such methods enable the use

of large but closed sets of indexed data, allowing the study of devised

interaction techniques.

1.3 Research Questions

In the previous section, we have introduced three properties of explorabil-

ity as research areas through which we address entity affordances for

explorability that are Direction, Orientation and Continuity. These three

areas have been operationalized into three respective research questions

around which the work presented in this dissertation is articulated.
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RQ1 : How can entity-based querying benefit information exploration?

Conventional search methods usually use the frequency of occurrence of a

phrase in a text as a proxy for relevance. In such a paradigm, text-based

queries are an obvious way of formulating a search intent. In a context

of entity-oriented information, interacting with entities as the primary

method to express a user’s search intent seems to have many benefits.

Among those, the possibility to readily use found information as part

of a query, therefore supporting query formulation through reliance on

recognition over recall [Hearst, 2006]. However, expressing a user’s intent

through entity interaction may lack the precision of a well-formulated

text-based query required to define a desired end-result. Thankfully, explo-

ration implying non-clearly defined goals and an unfamiliar context, we

can expect entity interaction to enable effective methods for providing a

direction to the search. Therefore, RQ1 leads to the design of such meth-

ods, and their evaluation to determine whether entity-based interaction

yields effective methods for expressing search directions, and can benefit

information exploration over conventional text-based querying methods.

RQ2 : How to demarcate and visualize a coherent information space

through entity-based affordances? Enabling orientation in the information

space requires a map, which in itself is a considerable challenge. Common

understanding of information as a space usually substitutes spatial dis-

tance for some conceptual distance, e.g., semantic proximity or adjacency.

However, there are usually too many potentially useful components for

computing such conceptual distances and to allow for a usable map-like

projection. For example, two pieces of information could be considered

as close from the viewpoint of their general topic, but extremely differ-

ent in their approach, and they might have been published in different

centuries but share a common geographic origin. There is virtually no

limit to potential classifiers that would allow for some absolute mapping of

information.

Orientation in the information space requires to work around such a

limitation. In accordance with our design goals, we wanted to investigate

user-driven methods to demarcate information of interest. More specif-

ically, we were interested in investigating methods derived from entity-

based querying to define mapping criteria and demarcate a corresponding
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information space.

RQ3 : How to benefit from entity-based interactions for exploration beyond

self-contained systems? We have seen that entity-oriented information

structures already serve the purpose of linking together heterogeneous

information sets, thus partially addressing the continuity issue. I was more

interested in addressing continuity from the viewpoint of explorers, whose

activity is potentially long-term and might not be contained within one

single convenient digital application. Search activities might be conducted

on a search engine, but insights might come from re-reading an old email,

asking a colleague for her opinion, or watching a seemingly unrelated video.

We wanted to address continuity by exploring possibilities for extending

any benefits of interactive entities beyond the confines of a dedicated

application, which requires a proactive approach that relies on monitoring

multiple aspects of a task in progress, and finding contextual information

for immediate or later use.

1.4 Research Contributions

RQ1 RQ2 RQ3

Publication I •
Publication II •
Publication III •
Publication IV •
Publication V •
Publication VI •
Publication VII •
Publication VIII • • •

Table 1.1. Distribution of the eight publications compiled in this dissertation with respect
to the three research questions.

The research presented in this dissertation consists of an extensive

design exploration of the topic at hand, and provides a variety of novel

interaction techniques that have shown to support information exploration,

and together demarcate a paradigm for future information practices. The

research process has yielded eight publications, including seven design

cases, all validated through user experiments, and a position paper. As
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shown in table 1.1, together they provide answers to all three research

questions.

Publication I – Designing for Exploratory Search on Touch De-

vices

We present an entity-based technique for directing exploratory search

on touch devices. We introduce ExplorationWall, a prototype exploratory

search system that implements such a querying technique and present an

experimental user study comparing the effects on search performance and

behavior of such technique over a baseline system replicating conventional

search engines when using portable touch devices. [Klouche et al., 2015].

Publication II – IntentStreams: Smart Parallel Search Streams for

Branching Exploratory Search

We introduce IntentStreams, a prototype that implements a technique

based on user-intent modeling for directing exploratory search, and parallel

search streams which enable visualization of simultaneous search sessions.

We then present an experimental user study comparing the effects on

the qualities of the search trail yielded by such technique over a baseline

system replicating conventional search engines [Andolina et al., 2015b].

Publication III – Visual Re-Ranking for Multi-Aspect Information

Retrieval

We present a visual querying technique based on multiple entities that

represent result relevance and density on a map, and a technique to

navigate the map by pointing at it, which triggers according re-ranking

of the results. We then present an experimental user study comparing

the effects on perception and retrieval over a baseline system replicating

conventional search engines [Klouche et al., 2017].

Publication IV – QueryTogether: Enabling Entity-Centric Explo-

ration in Multi-Device Collaborative Search

We present a prototype system designed to support co-located multi-

device collaborative exploratory search through finding and sharing enti-

ties. We then present an experimental user study comparing the effects on

participation, work-distribution and finding common ground over a base-
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line system replicating conventional search engines used collaboratively

[Andolina et al., 2018a].

Publication V – InspirationWall: Supporting Idea Generation

Through Automatic Information Exploration

We introduce InspirationWall, a display that leverages speech recognition

to enhance ongoing idea generation sessions with automatically retrieved

entities that relate to the conversation. We then present an experimental

user study showing the effects of such apparatus on idea generation over

time [Andolina et al., 2015a].

Publication VI – Investigating Proactive Search Support in Con-

versations

We study how a spoken conversation can be supported by a proac-

tive search agent that listens to the conversation, detects mentioned

entities, and proactively retrieves and presents related information.

We then present an experimental user study showing how such proac-

tive search agent augment conversations and affect topical structures

[Andolina et al., 2018b].

Publication VII – Proactive Recommendation in Context: From

Relevant Items to Actionable Entities

We present the design and implementation of an entity-centric proactive

system that makes entity recommendations by capturing users’ digital

context. We then investigate whether the approach can effectively support

everyday digital tasks by providing recommendations that have a concrete

influence on users’ tasks [Andolina et al., 2019].

Publication VIII – From Hyperlinks to Hypercues: Entity-Based

Affordances for Fluid Information Exploration

We introduce the concept of Hypercue, a complement to hyperlinks in the

form of an interactive representation of real-world entities (e.g., persons,

places, concepts) providing personalized access points to information. The

main contribution is a design template describing the Hypercue, which

consists of a minimal set of affordances that ensure all important features

for supporting exploratory search can be addressed [Klouche et al., 2018].
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1.5 Structure of the Dissertation

The dissertation is articulated as follows:

Chapter 2 provides useful background information for the reader, as well

as an overview of the closest work related to my research and of the notions

that together demarcate and motivate the research.

Chapter 3 describes the methods applied for this research as components

of Research Through Design methodology and Experimental Research, and

provides details on ethical considerations.

Chapter 4 presents the research regarding entity affordances for direct-

ing exploration and addresses RQ1: How can entity-based querying benefit

information exploration?. The chapter summarizes the systems devel-

oped in Publications I and II, overviews their respective evaluations, then

highlights their joint contributions through their main findings.

Chapter 5 presents the research regarding entity affordances for orien-

tation and addresses RQ2: How to demarcate and visualize a coherent

information space through entity-based affordances?. The chapter summa-

rizes the systems developed in Publications III and IV, overviews their

respective evaluations, then highlights their joint contributions through

their main findings.

Chapter 6 presents the research regarding proactive entity recommenda-

tion for continuity of the information space and addresses RQ3: How to

benefit from entity-based interactions for exploration beyond self-contained

systems?. The chapter summarizes the systems developed in Publications

V, VI and VII, overviews their respective evaluations, then highlights their

joint contributions through their main findings.

Finally, chapter 7 reflects on the findings of the research and presents

as the main contribution a design template first presented in Publication

VIII, a minimal set of affordances that ensure all important features for

supporting exploratory search can be addressed. Additionally, limitations

of the research and directions for future work are discussed.
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2. Background

The research presented in this dissertation consists primarily of an exten-

sive design exploration. This chapter provides an overview of the notions

that together demarcate and motivate the design space of our research

and describes these notions through the most closely related work.

2.1 Positive Information Practices

A large body of work builds upon what seems to be a human propensity to

consider information as a space in which we move, progress and discover.

Bates’ berry-picking approach to search [Bates, 1989] acknowledges and

describes the evolution of the cognitive model of a person as she goes

through the search process, which happens bit by bit instead of in a linear

fashion describe users’ and describes such information-seeking behavior

through the metaphor of a physical journey. The information foraging

theory [Pirolli and Card, 1999] posits that human natural information-

seeking behaviors use the same evolutionary mechanisms formerly used

to find food.

In the “information flaneur”, Dörk and colleagues go deeper into the

physical metaphor and compare information spaces to the 19th-century

city in terms of growth, cultural significance, and being the place for

social struggle and negotiation. Information behaviors are not solely mo-

tivated by what they call negative approaches, i.e., information needs in

the form of a knowledge gap to be filled, but include creative, participa-

tory and serendipitous motivations, referred to as positive approaches to

information practices [Dörk et al., 2011]. Such information-seeking behav-

iors are investigated and exemplified in the work of Thudt and colleagues

[Thudt et al., 2015] through the study of a variety of search patterns of

library patrons. Analysis of these patterns leads them to consider book
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search, in turn, as a creative process, through its social aspects, and as a

serendipitous exploration experience.

Thudt and colleagues address the importance of serendipity in support of

finding relevant information in exploratory scenarios [Thudt et al., 2012].

With The Bohemian Bookshelf, they explore support for serendipity

through information visualization by taking a cue from the physical action

of "browsing the shelves". As a result, they have devised five design goals

to promote serendipity through information visualization: (1) multiple

visual access points, highlighting adjacencies, flexible visual pathways,

enticing curiosity and playful exploration. These five principles have then

been implemented into a search system, The Bohemian Bookshelf, that

was embraced by library visitors. Such an example encourages the con-

ceptual transposition of properties of physical activities into their digital

counterparts. The generalization of such an approach is at the center of

the research work presented in this thesis.

Implications of such work for research offer design goals for fostering or

enabling these experiences by considering various explorability principles,

e.g., orientation, visual momentum, and opportunities for serendipity, and

bridging gaps between information spaces, contexts, and conceptual levels

by exploiting scalable or generalizable rules and common patterns. Such

models have all contributed to shift the emphasis from a mostly technical

consideration of information retrieval toward information practices as

human processes [Kerne and Smith, 2004].

2.2 Direct Manipulation and Fluid Interactions

Direct manipulation describes the mode of operation of reactive interfaces

that continuously represent the objects and actions of interest and rely on

physical action instead of complex syntax [Shneiderman, 1997], an interac-

tion paradigm in which digital representations of objects behave as objects

themselves [Shneiderman, 1993]. Direct interaction with these objects is

enabled by reducing indirections between input and output spaces. For

example, the touch-sensitive layer of a touch device is confounded with its

display and calibrated so that inputs are registered precisely at the display

location. The paradigm relies on immediate visible effects allowing rapid

course adaptation [Hutchins et al., 1985]. The move from devices using

the command line towards mouse input and touch-based interaction are

two important steps in this direction, allowing more closely the human
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action to happen where the effect takes place in the machine. Direct ma-

nipulation is known to improve user satisfaction through multiple effects:

Facilitated learning for novices, improved efficiency for experts, overall

more confidence and less anxiety through continuous feedback and better

predictability [Shneiderman, 1997].

In advocating for direct manipulation, Shneiderman pits design-

ers who are proponent of autonomous, adaptive, intelligent systems

against advocates of user-control, responsibility, and accomplishment

[Shneiderman, 1995]. By emphasizing control over a system, users be-

come responsible for their actions. Applied to information systems, we

immediately see how conventional search engines, which are suspiciously

reminiscent of the command line, deny such responsibility to users.

When we discuss interactions and user interface design,

fluidity is often cited as a goal [Guimbretière et al., 2001,

Ramos and Balakrishnan, 2003]. White and Roth [White and Roth, 2009]

mention fluid interactions as an important feature of future search systems

when discussing novel interaction paradigms. They link that notion to

human-machine symbiosis and interactions through fluid hand gestures,

citing the fantasy user interface used by anticipatory investigators in

the movie Minority Report as an example of what a truly fluid interface

could look like. However, that notion is not theoretically defined and is

generally used while relying on the reader’s intuitive understanding of the

metaphor, something that flows continuously, naturally making its way

around obstacles and adapting its pace to the environment.

Elmqvist and colleagues propose a satisfying operational definition

[Elmqvist et al., 2011], avoiding the difficulty of defining fluidity theoreti-

cally by focusing on the properties we can expect from fluid systems. These

properties are grouped into three sets:

1. Fluid interactions support direct manipulation.

2. Fluid interactions promote flow1.

1Flow is a mental state induced by immersion in one’s activity, characterized
by a loss of sense of time. The main actionable property for inducing flow relies
on letting users feel in control, and employ just the right amount of skills to let
them progress in their tasks at a pace that will feel neither too slow nor too fast,
accommodating a person’s continued and deepening enjoyment as skills grow
[Nakamura and Csikszentmihalyi, 2014].
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3. Fluid interactions minimize the gulfs of action2.

A limitation of this definition is that these properties are largely over-

lapping, and they seem contained in Shneiderman’s understanding of

direct manipulation, and advocacy for comprehensible, predictable and

controllable user interfaces; however, it provides various approaches to the

implementation of such goal.

2.3 Entity Search

In web searches, a majority of emitted queries pivot around a specific entity

[Jansen and Spink, 2006, Pound et al., 2010, Garigliotti and Balog, 2018].

In common search engines, queries pointing towards an entity, e.g., “Who

is Tom Hanks?” or more simply “Tom Hanks”, will usually trigger a

first result that points to the information source with the most general

information about the entity, typically the corresponding Wikipedia entry.

As the web still lacks a definitive repository of entities, Wikipedia is often

used as such a repository, as it provides information on most entities.

Google Search provides for most entity-based queries not only a relevant

entry but what they call “the knowledge graph”, an infobox showing rele-

vant information about the central entity in the query, with recommended

related entities. For example, in the case of an actor: name, age, and lists of

movies and co-stars. Miliaraki et al. [Miliaraki et al., 2015] studied the be-

havior of users of Yahoo Spark, a system that recommends related entities

alongside Yahoo Search results; the users take advantage of the system

to engage in explorative entity search by discovering information through

successive clicks on recommended entities. Such cases exemplify why

entity-search is considered an ideal paradigm for exploratory search and

an important topic in information retrieval and semantic web communities.

A large body of recent research work addresses challenges regarding the

computation necessary for entity search, such as the finding and ranking of

related entities, matching entities with occurrences in free text queries and

completion of entity lists based on given entity examples. However, as tech-

niques improve, it is difficult to find research addressing interaction tech-

niques that enable end-users to access and benefit from such rich informa-

2The gulfs of action are a notion introduced by Donald Norman [Norman, 2013],
who uses it to describe the gap between a user’s expectation of a system and the
system’s actual state.
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tion in a wide variety of activities, as examples usually target very specific

scenarios and tasks. Several such entity-based exploration systems have

been designed to support expert investigators in making sense of a corpus

of documents [Bier et al., 2008, Stasko et al., 2008, Carmel et al., 2012].

The goal of entity-based fluid information exploration requires substan-

tial thinking about the way we display and interact with entities and

come up with fundamental principles that are generalizable to any search

contexts (e.g., academic publications, social media, movie database and

personal emails).

2.4 Features of Exploratory Search Systems

The work of White and Roth on Exploratory Search provided a

precious frame to our understanding of how to support exploration

[White and Roth, 2009]. Their work includes a list of features of ex-

ploratory search systems that exemplify essential aspects of supporting

information exploration and provide a useful overview of the various di-

rections in which the work presented in this dissertation has sought to

address the problem at hand.

Support for Querying and Rapid Query Refinement

Search tasks are commonly addressed by inputting queries in a search

system, which then yields a set of related results. However, conventional

text-based queries are mostly user-defined. Relying on the user’s existing

knowledge to formulate satisfying search directions limits the range of

incrementation in the iterative exploration process [Teevan et al., 2005].

Support for querying is commonly addressed by providing the user with

ideas for new queries or additional terms.

Facets and Metadata-Based Result Filtering

Being able to navigate a large result set according to personal needs and

preferences is a central requirement of fluid information exploration. That

is why this ability – to narrow down such results according to a variety

of criteria that are representative of what is available in the data and

complementary enough to provide a meaningful choice of search directions

– is an important feature to support.

Facets and metadata-based parameters are an attempt to structure

information by linking documents semantically through common fea-
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tures (e.g., an author, a title, a date or a location). Faceted brows-

ing has shown to be effective in supporting sense-making. Various vi-

sualization techniques have been explored through a variety of work

[Lee et al., 2009, Smith et al., 2006], supporting the exploration of a collec-

tion of documents through meta-data-based commonalities.

Similarly, entity search is the ideal paradigm for result filtering, given

the richness and complexity of readily-linked data. From an initial query

entity, a system would retrieve the most central neighboring concepts or

elements and provide them as related entities to choose from. The initial

result set can then be narrowed down or re-ranked with respect to the

relatedness or dependency of each element to the chosen related entity.

Leverage of search context

A substantial part of context can already be harnessed by accessing con-

textual data provided by sensors (e.g., GPS signal or personal account

information). From our interaction design perspective, and in light of

our goal of increasing user control, I am more interested in techniques

enabling inference of context through users’ input, either explicit or im-

plicit. Inferring context from explicit user input includes detecting relevant

relations from the way she organizes stored information. Useful implicit

inputs can include what the user has been reading, oral conversation, or

physiological signals [Barral et al., 2018], which can be used by the system

to infer suitable relations or topics.

Visualizations to Support Insight and Decision Making

Interactive information visualization is an important tool for sense-making.

Being able to encode data visually and to play with various parameters is

a powerful way of discovering trends, understanding relationships, gain-

ing insight from the data and ultimately informing decisions. Entities

in knowledge graphs generally make for inspiring material regarding

visualization techniques such as node-and-link diagrams and adjacency

matrices.

Support for Learning and Understanding

As it is necessary to offer some result-filtering ability for the user to take

better advantage of a large set of results by narrowing down a list, it is also

important to provide the user with access to more general knowledge when

necessary. Support for learning and understanding implies that a user is

given the means to find information that is adapted to his current level of
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understanding. This is typically achieved through the recommendation

of related material. For example, any modern browser or eBook reader

provides the ability to look up the definition of a word or to link a concept

with its corresponding Wikipedia entry.

Support for Collaboration

Collaborative information exploration is a common strategy to tackle large

information spaces through the sharing of ideas and allocation of search

tasks [Hearst, 2014]. Collaboration can take multiple forms, with set-

tings in which collaborators either share or do not share the same space

(i.e. co-located or distributed collaboration), either synchronously or asyn-

chronously.

Histories, Workspaces, and Progress Updates

Information exploration is a sense-making activity [Marchionini, 2006].

As such, it is open-ended, potentially long-term, and changes continuously

as the information needs evolve [Pirolli and Card, 2005]. The process of-

ten produces long and complex search trails with multiple branches and

revisits. In this context, a user needs to be able to take advantage of

previously encountered information and to keep track of past activity to

more efficiently recognize new and interesting information.

Support for Task Management

As information exploration is potentially long-term, users need to have

the ability to interrupt and resume their activity and to carry it over time

and across devices. This requires the ability to not only save selected

information but to provide future access to whole workspaces, including

histories and information configuration with which a user has engaged.

2.5 Visualization of the Information Space

The following section provides an overview of closely related work involving

data visualization. First, with regards to directing the exploration, the

section covers various techniques for visual information retrieval and multi-

aspect search, i.e., search involving multiple simultaneous criteria. Then,

pertaining to orientation in the information space, I overview techniques

for visualizing large document collections and examples of user-driven

visualizations.
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2.5.1 Visual Information Seeking

Information spaces can be huge and thus hard to comprehend. However,

visualizing the space and allowing the user to directly interact with and

manipulate objects in the space facilitates comprehension. For instance,

when the results of actions are shown immediately and when typing is

replaced with pointing or selecting, exploration and retention increase

while errors decrease [Shneiderman et al., 2009]. For information seek-

ing, the following visualization and interaction features are of particular

importance [Shneiderman, 1994]: (a) dynamic querying for rapid brows-

ing and filtering to view how results change; (b) a starfield display for

the immediate, continuous, scalable display of result sets as different

queries are processed; (c) tight coupling of queries to easily use the out-

put of one query as input to another [Ahlberg and Shneiderman, 1994].

For instance, a user study indicates that dynamic querying significantly

improves user response time and enthusiasm. Using such techniques, sys-

tems like FilmFinder [Ahlberg and Shneiderman, 1994] support querying

over multiple varying attributes such as time, while showing the changing

query results in the context of the overall data. Another example is found

in VisGets [Dörk et al., 2008], which augments search and exploration on

the Web with a variety of coordinated visualizations, providing not only a

multidimensional overview of the information space, but also the visual

means to precise the query and filter the data.

User studies also indicate that user interfaces that show the re-

sult list together with an overview of the result categories encour-

age a deeper and more extensive exploration of the information space

[Kules and Shneiderman, 2008], especially when the system allows rele-

vance feedback to be given on such categories to direct the exploration

[Ruotsalo et al., 2013b, Ruotsalo et al., 2015].

2.5.2 Multi-Aspect Search

In multi-aspect search the information need of the user consists of more

than one aspect or query simultaneously. As a consequence, an item in a

collection needs to be ranked differently based on its multiple attributes.

The Graphics, Ranking, and Interaction for Discovery (GRID) principles

and the corresponding rank-by-feature framework state that interactive

exploration of multi-dimensional data can be facilitated by first analyzing

one- and two-dimensional distributions and then by exploring relation-
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ships between the dimensions, using multi-dimensional rankings to set

hypotheses and statistics to confirm them [Seo and Shneiderman, 2005].

However, comparing, analyzing and relating different ranks is difficult and

requires an interactive visualization that supports the various require-

ments identified by Gratz et al. [Gratzl et al., 2013]. For example, Polaris

[Stolte et al., 2002] is a visualization tool for exploring large multidimen-

sional databases. The system allows the user to drag relational aspects

from the database schema onto the display area and select context-relevant

display specifications to generate a variety of rich visualizations.

Multi-aspect search support is provided in Song et al. [Song et al., 2012],

with the proposal of a strategy for a multi-aspect oriented query summa-

rization task. The approach is based on a composite query strategy, where

a set of component queries are used as data sources for the original query.

Similarly, Kang et al. [Kang et al., 2012] propose a multi-aspect relevance

formulation, but in the context of vertical search.

LineUp [Gratzl et al., 2013] is an interactive visualization that uses bar

charts to support the ranking of objects with respect to multiple hetero-

geneous attributes. Stepping Stones [Das-Neves et al., 2005] visualizes

search results for a pair of queries, using a graph to show relationships

between the two sets of results. Sparkler [Havre et al., 2001] allows us to

visually compare results sets for different queries on the same topic. Tile-

bars [Hearst, 1995] visualizes the frequency of different words in various

sections of documents as a heat map and ranks the documents accordingly.

Similarly, HotMap uses a two-dimensional grid layout to augment a conven-

tional list of search results with colors indicating how hot (relevant) specific

search terms are with respect to the document [Hoeber and Yang, 2006b].

Ranking cube [Xin et al., 2006] is a novel rank-aware cube structure that is

capable of simultaneously handling ranked queries and multi-dimensional

selections. RankExplorer [Shi et al., 2012] uses stack graphs for time-

series data. Techniques for incomplete and partial data have also been pro-

posed [Kidwell et al., 2008]. TreeJuxtaposer [Munzner et al., 2003] was

primarily devised to compare rankings.

For document collections, the vector space model could be used, such that

each document and search query is a vector in a multi-dimensional space,

each axis is a term, and the document position is determined by the frequen-

cies of each term in that document (e.g., [Raghavan and Wong, 1986]). Vi-

sualizations of such a model could aid understanding of the document space,

but more research is required, particularly for user-driven approaches that
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allow the user to specify the dimensions of interest [Olsen et al., 1993].

2.5.3 Visualization of a Document Collection

Various visualizations have been proposed for large document collections

[Kucher and Kerren, 2015]. Most of these techniques adopt the visual

information seeking mantra [Shneiderman, 1996] to provide an overview

at first and details only on demand. The documents are often visualized on

a 2D plane, in the form of a map based on a similarity metric. Higher-level

entities, such as topics, are also displayed on the map for immediate and

better understanding of the document space organization.

Document Atlas [Fortuna et al., 2005] uses Latent Semantic Indexing

and multi-dimensional scaling (MDS) to extract semantic concepts from the

text and position the documents with respect to the concepts. Document

densities around concepts are visualized as a heat map. On mouse hover,

common keywords in the area are listed, and on zoom in, more details are

shown.

Self-Organizing Maps have also been used by systems like WEBSOM

[Kaski et al., 1998] and Lin’s maps [Lin, 1997] to position the documents

on the 2D plane. WEBSOM also suggests areas in the map that could

be relevant to the user’s search query. Lin’s maps are further split up

into regions whose area indicates the number of documents with specific

related terms.

Other techniques visualize the documents as glyphs to indicate

additional inter-document relationships and metadata on the map

(e.g., [Rohrer et al., 1998, Miller et al., 1998]). Various metaphors have

also been adopted; examples include the terrain metaphor, in which

dense regions in the map are seen as mountains with valleys in be-

tween [Boyack et al., 2002, Wise et al., 1995]; the galaxy metaphor, in

which documents are seen as stars in different constellations (docu-

ment clusters) [Hetzler and Turner, 2004]; and the physical metaphor,

in which documents are considered to be moving particles and the

inter-particle forces move similar documents closer to each other

and dissimilar documents apart [Chalmers and Chitson, 1992]. Vi-

sualizations with two dimensions and meaningful axes (e.g., cat-

egories vs. hierarchies [Shneiderman et al., 2000], query results

vs. query index [Ruotsalo et al., 2016], production vs. popularity

[Ahlberg and Shneiderman, 1994]) have also been proposed.

ResultMaps [Clarkson et al., 2009] takes advantage of pre-existing on-
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tologies used in digital libraries to create a hierarchical view in the form

of a tree-map [Johnson and Shneiderman, 1991]. Such a technique allows

for consistent representation of a given document collection. Integrated

within the result page of a digital library, found or explored documents

can be highlighted on the visualization, providing the user with a growing

sense of familiarity over areas of interest.

These visualizations provide an overview of the entire document col-

lection, but they do not allow the user to direct and focus the explo-

ration as required. A user-driven rather than a data-driven technique

could be more helpful when searching for documents relevant to multiple

keywords. To that end, such a technique should visualize the ranking

of documents with respect to multiple keywords so the user can easily

judge the relevance of documents to each of the keywords of interest

[Olsen et al., 1993]. However, most of the current techniques only visualize

whether a document is relevant or not to a keyword using set visualiza-

tions [Alsallakh et al., 2014], without showing the document’s degree of

relevance to each keyword.

2.5.4 User-driven Visualization

VIBE [Olsen et al., 1993] is one of the most well-known user-driven multi-

dimensional ranking visualization for large document collections. To indi-

cate the subspace of interest, the user first enters two or more query terms,

known as "points of interest" (POIs). POIs are then shown (as circles) on a

2D plane, together with documents (as rectangles) related to at least one

POI, forming a map. The position of each rectangle indicates the relevance

of the corresponding document to each of the POIs. The size of a rectangle

indicates the relevance of that document to the search query. Citation

details of documents selected from the map are listed; clicking on an item

in the list opens the full document. Any time a POI is added, removed

or moved, the map is updated accordingly. However, regions of the map

with numerous close-by documents are not easily detectable because the

rectangles are not color-filled; using semi-transparent color-filled shapes

reduces overplotting [Matejka et al., 2015] and facilitates the perceptual

ordering of different regions in the map by their density [Mackinlay, 1986].

Also, documents are not re-ranked as the user navigates over the map.

Variants of VIBE include: WebVIBE [Morse and Lewis, 1997], in which

POIs act like magnets that attract documents containing related terms;

VR-VIBE [Benford et al., 1995], which visualizes the space in 3D (for more
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space to view documents between POIs) and depicts relevance by color;

and Adaptive VIBE [Ahn and Brusilovsky, 2009], in which POIs are query

terms (as in VIBE) but also user profile terms that are automatically

extracted from user notes.

Similar to VIBE, GUIDO [Nuchprayoon and Korfhage, 1994], DARE

[Zhang and Korfhage, 1999] and TOFIR [Zhang, 2001] also allow users

to specify POIs and display documents based on their relevance to the

POIs. However, in GUIDO each POI is an axis (not an icon on a 2D plane)

and documents are positioned based on their absolute rather than rela-

tive distances from the POIs. In DARE and TOFIR, relevance to POIs is

indicated by both distance and angle.

Other user-driven systems, like combinFormation [Kerne et al., 2006],

TopicShop [Amento et al., 1999] and InfoCrystal [Spoerri, 1993], retrieve

and display search results related to user-defined keywords but do

not visualize the results’ multi-dimensional ranks. Similarly, HotMap

[Hoeber and Yang, 2006b] supports a weighted re-ranking of the search

results, but without leveraging a graphical interactive approach for spec-

ifying the weights. WordBars [Hoeber and Yang, 2006a] also supports

re-ranking of the search results, but uses additional terms extracted from

the search results rather than relying on the query terms.

This section aimed to exemplify the extensive previous work surrounding

information visualization and the various purposes to which it can be

applied in the context of this research. It would not be complete with-

out mentioning the work of Hinrichs and Forlini defending sandcastles

[Hinrichs and Forlini, 2017], in which they make the case for information

visualization as an exploratory process in itself that can potentially yield

insights through its inherent interdisciplinarity and aesthetic provocations,

independently from its consideration as a means to an end.

2.6 Digital Activity Monitoring

Continuity between various information spaces, for example, harnessing

insights from a read or a conversation for immediate or later use, requires

proactive approaches involving monitoring of a user’s digital activity. Re-

search on digital activity monitoring and prediction of user behavior has

typically focused on large-scale tracking, e.g., based on what people are

sharing on social media [Zhu et al., 2013, Yang et al., 2015]. This mass

monitoring approach has some important drawbacks, including loss of
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privacy and lack of trust for the system [Chaudhry et al., 2015]. However,

some recent work has studied technologies for individual monitoring of per-

sonal data, putting the collection and analysis of the data into the hands of

the individuals themselves [de Montjoye et al., 2014, Sjöberg et al., 2017].

Most of the approaches mentioned so far have focused on monitor-

ing specific applications or other limited data sources. However, recent

work [Vuong et al., 2017a, Vuong et al., 2017b] has explored using screen

monitoring, which captures the entire visual content of the computer screen

for task recognition. Latent Semantic Analysis [Deerwester et al., 1990]

with a simple bag-of-words data representation was found to be the most ef-

fective to detect users’ tasks and helpful for proactive information retrieval.

This tracking "inside the screen" paradigm has the benefit of being more

general, as any visually communicated information can potentially be cap-

tured, and utilized for building a richer task model. An approach similar

in spirit, but more limited, is described in [Gyllstrom and Soules, 2008]

where seen text snippets are associated with files opened at the same time.

2.6.1 Using Background Speech for Interaction

Speech-based interaction has been thoroughly studied in the literature.

However, the interest in speech-based systems seems to have risen again

in recent years, probably due to the recent advances in automatic speech

recognition [Negri et al., 2014]. In particular, a large body of work focuses

on a dialogic mode of interaction [McTear, 2002] where users communicate

with the system using natural language. Commercially available examples

include Apple’s Siri, Microsoft’s Cortana, and Google Now.

Less investigated is the use of background speech for interaction. One

example is Ambient Spotlight [Kilgour et al., 2010], which uses speech

recognition during meetings to search for desktop documents and puts

them in a folder associated with the calendar entry related to that meeting.

Other systems use background speech to retrieve words and other kinds

of visual stimuli to support a creative conversation [Shi et al., 2017]. As

opposed to those systems, which are designed to support creative conversa-

tions where even misrecognition and random results may lead to useful

stimuli [Kirsh, 2014], we investigate how to support more generic conver-

sations by proactively retrieving richer sources of information, such as

documents, from the Web.

An important study related to our work is that of McGregor and Tang

[McGregor and Tang, 2017]. The aim of their study was to understand
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how well a speech-based agent could detect useful actions during formal

meetings. Although the study used a simulated system to create a best-case

scenario, results showed that extracted action items failed to fit with the

meeting or gave an incorrect summary of what was being discussed or what

the participants intended. A different approach was that of McMillan et al.

[McMillan et al., 2015]. Their study suggested that a continuous speech

stream, rather than containing directly actionable items, can be used to

identify users’ next actions such as searches. This result inspired our

research, as it means that regardless of the limitation of current automatic

speech recognition technology, many useful words that would likely be used

for a search could still be recognized. In this study, we aim to understand

whether performing those searches proactively during conversations could

effectively enrich those conversations.

2.7 Summary

The overview of positive information practices presented in this chapter

has shown how activities pertaining to information seeking are not to be

limited to the bridging of a gap or the fulfillment of a need but can be led

by curiosity and serendipity. The design goal of explorability through orien-

tation and continuity described by Dörk and colleagues [Dörk et al., 2011]

inspire us a mental picture of a wanderer engaging with an information

space as she would with a city, orienting herself and becoming famil-

iar enough with her surroundings that she starts noticing unadvertised

changes. In today’s reality, conventional search tools will only help her find

something for which she already has an interest in and some knowledge of,

and recommender tools remove her from the active role required in explo-

ration. Is it then possible to think of tools that would enable or facilitate

such behavior?

As this chapter has shown, fluidity in interactions results from the ability

of a user to feel in control of a process despite the potentially high level

of abstraction of such process. When looking for examples of interactions

qualified as fluid, we realize all examples focus on replicating properties of

physical interaction to take advantage of a user’s existing experience of the

world as a means to infer the correct sequence of action to take towards

the desired goal. Such observation encourages us to identify properties of

the physical space that can be emulated in the information space to enable

exploratory behaviors that do not benefit from conventional search and

36



Background

recommendation approaches.

Then the chapter covers the use of entities for search and exploration.

Entities create a double opportunity: On the one hand, they enable the

organization of information into a continuous metric space. On the other

hand, they offer a flexible unit of information with which to interact in

novel ways. These two aspects seem to simultaneously provide the field

and the vehicle for fluid exploration, which encouraged us to make entity

interactions the technical focus of our research. The features of exploratory

search systems summarized in this chapter offer precious guidelines when

designing for information exploration. However, we want to avoid the trap

of implementing these features individually into bloated interfaces that

would largely defeat our goal of fluid interactions. Instead, we will be

using these features as a lens to assess the validity of our designs and

their potential for exploration.

Subsequently, the chapter showcases a variety of significant works per-

taining to information visualization. Through examples of how a document

collection and an information space of interest can be demarcated and

explored visually.

Finally, the chapter presents research work pertaining to digital activity

monitoring as it is used as a means to transpose the property of continuity

from the physical space to the information-seeking practices.

Together, these sections provide the reader with the necessary back-

ground to understand the variety of techniques used in the present re-

search as well as the preliminary information required to put the present

research in its proper context.
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3. Methodological Considerations

This chapter overviews the research strategies and methods used, as well

as the ethical concerns and how they were addressed.

3.1 Research Through Design

The work presented in this dissertation is an exploration of a design

space through seven projects reported in publications I to VII, each of

which follows the structure of Research Through Design as established

by Alain Findeli and colleagues [Findeli et al., 2008], as they all feature

clear Research For Design, Research About Design and Multidisciplinary

components.

Figure 3.1. Model of the role of the interaction design researcher among other HCI re-
searchers, emphasizing the production of research artifacts as units of analy-
sis.

Applied to Human-Computer Interaction, the role of the designer en-
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gaged in such methodology is accurately described by Zimmerman: Interac-

tion design researchers integrate the models and theories from behavioral

scientists, with the technical opportunities demonstrated by engineers to

produce artifacts. These artifacts enable speculative exploration influenc-

ing both the research and practice community [Zimmerman et al., 2007].

The model is illustrated on Figure 3.1.

Research For Design

Each project starts with a thorough literature review around the challenge

at hand, aimed at identifying a clearly demarcated gap in knowledge, and

inform the design of an information system and its user interface. The

specifications for the system are in the case of this research put in the

form of a scenario exemplifying a detailed use case. The scenario is used

as a designed tool at various stages of the design process as it provides

multiple benefits exemplified by Caroll [Carrol, 1999]. In the ideation

phase, it helps define the design intent through typical use cases to be

addressed. In a multidisciplinary context such as the one from which

the present research stems, a scenario is a precious tool for involving

collaborators with different fields of expertise, e.g., interaction designer

and engineers in retrieval systems, by communicating an intent grounded

in real-world use, then letting them infer resulting technical requirements

and raise questions, potential difficulties or provide insights, therefore

finding common-ground and ensuring converging work effort throughout

the design, implementation and evaluation processes. This stage qualifies

as Research For Design as it consists of drawing on available knowledge to

produce an artifact.

Research About Design

Each of these artifacts then becomes itself a unit of analysis. It is evaluated

following rigorous experimental research methods with the objective of

producing new knowledge that is relevant to the design community, usually

in the form of design principles that have been identified as providing

benefits in the context of the challenge at hand.

Multidisciplinarity

All the research work reported in this dissertation is the product of highly

multidisciplinary collaborations at the intersection of Information Re-

trieval, Human-Computer Interaction and User Interface and Experience

Design. As evidenced by the generally high number of authors on Pub-
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lications I to VII, corresponding projects are the outcome of the various

domains of expertise being involved at every level of each project.

3.2 Experimental Research Methods

Findeli et al. emphasize the necessity for Research Through Design

projects to be rigorous and stand up to usual scientific standards

[Findeli et al., 2008]. We used experimental research methods allowing

us to design tasks involving various conditions whose comparison would

enable investigation of a set of hypotheses. To design a task or select a

method most suitable to validate a hypothesis, we strived to maximize

three features of measurement devised by McGarth: generalizability of

the results across the population of users, precision of the results through

control of confounding factors, and the realism of the context in which the

experiment is conducted [McGrath, 1995].

To answer the research questions, we have opted for controlled labora-

tory experiments as a method for maximizing precision and control over

confounding factors, thus enabling comparison of the experimental con-

dition with a corresponding baseline condition, which would have been

extremely difficult to do in the field. As McGarth explains it, each of the

three features tends to interfere with one another, and the chosen strategy

represents challenges the realism of the context as it constrains the loca-

tion and the task. We strived to compensate such trade-off by designing

naturalistic tasks grounded in the literature. Generalizability was assured

through a sufficient amount of participants and systematic computation of

the significance of the results, i.e., the probability that a difference between

the conditions is not coincidental.

We opted for systematic within-subjects experiment designs, meaning

that we relied on the same pool of participants for testing both experimen-

tal conditions, as opposed to between-subjects, which would imply distinct

pools of participants for testing each condition. Within-subjects experi-

ment designs require less overall participants while minimizing random

noise introduced by individual personalities, however, they require some

care to avoid participants to transfer acquired knowledge from the first

tested condition to the next. To that end, we carefully balanced among

participants the order of the tested conditions, as well as the provided

topics to be explored.
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3.3 Data Collection

Data collection was done in several forms:

3.3.1 Experimental and baseline conditions

Experimental and baseline conditions were prepared to allow logging of

user actions, e.g., queries sent, typed, results received, displayed, consulted

and saved. Despite needing the baseline condition to accurately replicate a

realistic situation, we could not simply use conventional existing tools, as

they would have utilized a different backend, i.e., data collection and re-

trieval algorithm, thus introducing noise. Therefore, to be able to compare

interaction-based effects between conditions, we needed for our baselines

to create custom systems with a conventional interface that used the same

backend as in our experimental condition.

3.3.2 Videotaping

Videotaping enabled transcription of dialog and logging of occurrences

of screen gaze in Publications IV, V and VI, which are summarized re-

spectively in Sections 5.2, 6.1 and 6.2 of this thesis. Dialog transcription

was done by hand using specialized software for qualitative experiments

(ATLAS.ti) that facilitated the assignment of transcribed dialog to specific

timecodes in the video. Screen gaze monitoring was also done manually.

In the study reported in Publications V and VI, the setup conveniently

involved laptop computers whose embedded camera right above the display

provided a point of view that made occurrences of screen gaze obvious. In

the study reported in Publication IV, the large public display to which

gazes were monitored was large enough and positioned in a specific angle

that allowed us to pick up such occurrences from the point of view provided

by the general camera.

3.3.3 Usability Testing

Standard questionnaires were used to inform us of usability factors.

The Standard Usability Scale (SUS), seen in Figure 3.2, is a questionnaire

described as a "Quick and Dirty" usability scale that provides a global view

of subjective assessments of usability [Brooke et al., 1996]. SUS broadly

covers the notions of effectiveness, efficiency, and satisfaction provided
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by a given system in the general context of the purpose in which it is

being tested. It consists of a simple, ten-item scale, each item consisting

of a Likert scale, i.e., a statement to which the participant indicates

a level of agreement on a (usually) five-point scale. SUS was used in

the experiments reported in Publications I, II, IV and VI, respectively

summarized in Sections 4.1, 4.2, 5.2 and 6.2.

Figure 3.2. The ten items of the Standard Usability Scale (SUS).

The User Engagement Scale (UES), seen on Figure 3.3, is a mul-

tidimensional questionnaire, initially developed with thirty items

(Likert scale) allowing to assess users’ perceptions of six factors: the

Perceived Usability (PUs), Aesthetics (AE), Novelty (NO), Felt Involve-

ment (FI), Focused Attention (FA), and Endurability (EN) aspects of

a system [O’Brien and Toms, 2010]. UES has proved useful in the

contexts of exploratory search and interactive information retrieval
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[O’brien and Toms, 2013]. In its revised short form [O’Brien et al., 2018],

UES includes twelve questions addressing four factors: Focused Attention

(FA), Perceived Usability (PU), Aesthetics (AE) and Reward (RW). UES

was used in its short form in the experiments reported in Publications I, II,

IV and VI, respectively summarized in Sections 4.1, 4.2, 5.2 and 6.2.

Figure 3.3. The twelve items in the short form of the User Engagement Scale (UES)
address four factors: Focused Attention (FA), Perceived Usability (PU), Aes-
thetics (AE) and Reward (RW).

ResQue (Recommender systems’ Quality of user experience) is a user-

centric evaluation framework for recommender systems [Pu et al., 2011].

The prototypes developed in our exploration of entity-based querying

techniques function as recommender systems, as they use a collection of

items – in our case defined by the users as a means of inputting their

intent and direct the search– to return a selection of related items. Such

questionnaire was useful in assessing whether the returned elements

matched users’ expectations. SUS was used in the experiments reported in

Publications I, II, IV and VI respectively summarized in Sections 4.1, 4.2,

5.2 and 6.2.

Usability was also assessed through semi-structured interviews performed

after the session, to inform us on users’ subjective experience and benefit

from her potential insights. The Semi-structured qualifier refers to the

fact we usually had a prepared bullet-point list of subjects to address, but

we did not avoid digressions and informal conversation. Such interviews

were used in the experiments reported in Publications I, III, IV and VI,

respectively summarized in Sections 4.1, 5.1, 5.2 and 6.2.

44



Methodological Considerations

3.4 Ethical Considerations

In all our experiments, participants were informed of our privacy guidelines

upon joining. They were told that the data would be encrypted and stored

on a secured server at the university, only to be used for research purposes.

When applicable, participants were also informed of the use of Google and

IBM services in the experiment. According to the term of services given

by Google and IBM, the data would only be stored for a period of time

sufficient to perform its analysis.

Prior to taking part in the study, participants had to sign a consent form

stating the procedure of the study and data usage policy. Participants

were informed that they were allowed to withdraw from the experiment

at any time, in which case all resulting data would be removed from any

respective server or storage device.

No experiment involved the collection of data without the participants’

prior knowledge and consent. All research followed the ethical guidelines

of the University.
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4. Directing Exploration Through Entity
Interaction

While document-based search relies heavily on frequency – the occurrence

rate of a text-based query in the content of a document – entity-based data,

or knowledge graph, is less content-focused, therefore the same technique

does not apply. The theory of how to retrieve entities in a graph is well

established and already common use in conventional search engines. These

still rely on typed queries but use many techniques to identify entities

within a query typed in natural language for disambiguation purposes and

to improve search results.

Techniques involving direct interaction with entities also exist, however

it mostly consists of following information paths provided by successive

single recommended items, like following a path of hyperlinks. Such an

approach can lead to enjoyable serendipity, but it lacks the means to yield

the personalized results that a typed query can provide. As for typed

queries, we already established that recalling search terms to formulate

and refine queries, is not as easy as following or selecting visible items,

especially when exploring unfamiliar information spaces.

We were interested in developing techniques for entity-based search that

involve direct interaction with entities and are able to yield a scope of

search results that is at least comparable to typed queries.

Entity-based queries consist of a set of one or several entities of interest

that together express a user’s search intent. As a result, such query yields

a crop of new entities, ranked according to their overall relatedness to the

query. Entities from the results, besides conveying potentially interesting

information, can readily be added to the current query or be used as

a new separate query. Entity-based querying offers support for rapid

query refinement while enabling more personalized search directions than

following single recommended entities.

The process of formulating queries through association of concepts is
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a compelling idea but to our knowledge, the literature does not provide

observations on whether such approach is effective in enabling users to

express and refine search intents, and can benefit an iterative process such

as exploratory search, especially when compared to the conventional typed-

queries approach. Therefore, validation of the use of entity-based querying

for exploratory search first required testing of system implementing such

features to understand how it affects performance and behavior when used

in exploratory tasks.

This chapter reports on the design of two prototype systems that make

use of different techniques for entity-based querying, showcasing the ef-

fects of these systems on search performance and user behavior in tasks

pertaining to exploratory search.

The first one, summarized in Section 4.1 and reported in Publication

I, allowed us to investigate the potential of entity selection for directing

exploratory search. The second one, summarized in Section 4.2 and re-

ported in Publication II, adds the possibility for relevance feedback and

user modeling to explore the potential for user-driven recommendations

in directing exploratory search. User-testing of both systems provided us

with satisfying answers to RQ1 : How can entity-based querying benefit

information exploration?.

4.1 ExplorationWall: Directing exploratory search through direct
manipulation

Taking cues from the simplicity of the hyperlink, we looked for a technique

that would allow someone to quickly react to any inspiring bit of infor-

mation and be able to follow any encountered conceptual lead. As stated

above, several search engines already suggest entities to follow (“you might

be interested in...”) but a succession of single entities does not rival with

the scope of results that can yield more complex types of queries.

Therefore, we decided to investigate the results of querying by following

multiple entities simultaneously. This technique allows for different kinds

of concept associations. For example, using “Finland” as an initial query

would yield a crop of various results, potentially including “Independence”.

Adding then “Independence” to the initial query would narrow down the

results quite dramatically. In the same way, “Leonardo da Vinci” could yield

several works and topics, among which “drawings” which could readily

be used to precise the search intent. The same technique can be used to
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disambiguate a query, like adding “Elon Musk” to “Tesla”, or to look for

unexpected conceptual intersections, like “Tesla” and “Drawings”.

The nature of entities is such that nothing prevents querying using a

person, a location or even a document. A query consisting of an academic

article would yield adjacent entities, e.g., authors, keywords and publishing

details. Such queries can consist of a single entity, as well as two or much

more. We refer to that technique as entity picking.

This section reports on the design and evaluation of ExplorationWall

(EW), a system that implements entity picking.

The reliance of information exploration activities on search and iterative

querying [Capra et al., 2007] tends to exacerbate any challenge in the basic

search process. First, activities considered as related to exploratory search

usually take place in areas that are unfamiliar to the user which makes

query formulation intrinsically difficult. Second, the conventional search

process relies heavily on text-based and window-based interaction, which

are notorious weaknesses of touch devices, e.g., tablets and smartphones,

on which text manipulation is made difficult by the absence of a physical

keyboard, hotkeys or shortcuts, and the lack of an accurate selection tool

[Esenther, 2006, Varcholik et al., 2012].

Therefore, we decided to take this challenge as an opportunity to develop

a system specifically designed for touch devices, by using entities and

developing affordances that would enable direct manipulation of entities

for querying. Entity-based querying not only provides a substitute for

typing, but also provides possible search directions to the user, who does

not need to recall search terms and formulate queries, but can readily use

entity search results to express and refine her search intents.

Three principles were derived from these requirements for the design of

the system:

1. Querying and organization of information was to be done through

direct manipulation of entities to provide a substitute for text entry and

provide users with search directions in unfamiliar areas.

2. Results would consist of entities of different types, e.g. persons, topics,

documents — by opposition to conventional purely document-based search

results — each ready to be used as a new query or to refine or precise an

existing query.

3. Multiple search sessions — or result sets — would share a common

workspace to foster insights and parallel search, and address the limita-

tions of windowed parallel search sessions.
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Figure 4.1. The ExplorationWall interface consists of the query area (a), the results area
(b), search streams (c), 3 types of information items: papers (d1), authors
(d2) and keywords (d3), and the reading-list drawer (e). Entities can be
moved freely to the query area. A relevance gauge over their label visualizes
their computed relatedness to the query. Queries consists of entity clusters
positioned manually. The whole workspace is scrollable and horizontally
unlimited.
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Multi-touch gestures allows user to easily add or remove space between streams. Papers
can be consulted by tapping on their icon.
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4.1.1 Overview of the System

The system works as a full-screen standalone application.

The User Interface

The interface of ExplorationWall (Figure 4.1) consists primarily of the main

workspace, which is divided into two areas, the query area at the bottom

(Figure 4.1 a), and the result area on top (Figure 4.1b). An entity dropped

in the query area constitutes a query and automatically yields a set of

related entities (Figure 4.1 d) aligned vertically on top of it in the result

area. We refer to this vertical presentation as a search stream (Figure 4.1

c). Any entity from the result set can be in turn drag-and-dropped to the

query area to constitute a query and yield a new crop of related entities in

a parallel search stream. Entities in the query area are freely positioned

by the user. When two entities are put horizontally close enough together

in the query area, they attach through a thin line that signifies that they

will be considered as a single query. Their respective result set merge into

a new one, now forming a single search stream containing a result set of

entities that, if possible, relate simultaneously to both entities in the query.

Queries can consist of a virtually unlimited number of entities. In the

same way, there is no fixed limit to the number of parallel search streams

that can be created in the workspace, which can be scrolled horizontally to

provide some space or to retrieve some previous search stream. Horizontal

space can also be added to, or removed from, a specific location using a

conventional pinch gesture, the same pinch gesture can also be used to

dilate or contract space, to quickly improve legibility of an area become

cramped with information. Any entity taken from one search stream can

be used either as a new query or to refine the query of an existing search

stream.

This instantiation of ExplorationWall is developed around a collection

of academic publications, for such information is readily structured into a

graph of entities, namely authors/persons (Figure 4.1 d2), keywords/topics

(Figure 4.1 d3) and articles/documents (Figure 4.1 d1), which constitute the

three types of entities that are available here. Each entity is represented

by a pictogram and a name or title label. Result entities are also displayed

with a relevance gauge that indicates their relatedness to the query as

estimated by the system’s algorithm. Document entities also display the

author’s list in addition to their title and below it. Document entities can

be tapped to reveal additional metadata and an abstract.
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A reading list is accessible as a collapsible drawer on the right side of

the workspace (Figure 4.1 e) and can be swiped open or closed. Entities

of interest can be dragged and dropped inside it for storage and later use.

Stored entities will appear highlighted in the workspace.

Interaction Scenario

On the 5th of August 2014, Alice has just heard about the ESA Rosetta

space mission which probe had just reached the vicinity of the comet

Churyumov–Gerasimenko. Having learned that the mission has launched

ten years prior, using ExplorationWall, she is curious to see what kind of in-

formation she can find within the academic data of the system. She starts

by instantiating the keyword “Rosetta” and uses it as a query. Without

surprise, most of the results refer to the rosetta stone, she unfortunately

does not see information related to the space mission. She adds the key-

word “Comet” to the query, now all information is related to her subject

of interest. She sees a number of articles, researchers and recommended

topics on the subject. One article is about MIRO, a microwave instrument

onboard the orbiter. She drops the article as a new query, and a parallel

search stream opens. She sees the authors of the papers, related papers,

and a few recommended topics, including “Instruments”. She adds that

entity to her first query now consisting of “Rosetta”, “Comet” and “Instru-

ments”. The refreshed results now offer a catalog of all instruments on

board the spaceship to be inspected. Simply following her curiosity and

without prior technical knowledge of the subject, Alice was quickly able to

find new information of interest in a highly technical area, which would

require higher cognitive load using conventional search tools1 that forces

the user to iteratively come up and formulate her search intent.

4.1.2 Overview of the Study

The main purpose of the evaluation was to observe the effects and implica-

tions of entity-based querying on search performance and search behavior.

Therefore, ExplorationWall was compared to a search interface that was

implemented following the interface principles of traditional search tools

as seen in Figure 4.2.

The evaluation consisted of two tasks, a short one and a long one. We

1As conventional search tools would rely on her recollection of search terms of
interest instead of providing search directions. Recognition has been shown to be
less cognitively taxing than recall [Hearst, 2006].
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Figure 4.2. A screenshot of the baseline system replicating a conventional search interface
with typed query.

chose 6 possible different topics for the two tasks: crowdsourcing, smart-

phones energy efficiency, diagrams, semantic web, lie detection and digital

audio effects. In order to ensure that participants were not experts in

the topics and could perform a real exploratory search, they pre-rated

their familiarity with the topics on a 1 (less familiar) to 5 (most familiar)

scale. The four less familiar topics were used in the tasks. Both tasks

were performed with different topics, so the participants did not know

the results from the previous task. For the short task, participants were

given five minutes to address the following instruction: “Search and list

5 relevant authors, documents and keywords that you consider relevant

in topic Y.” For the long task, they were given twenty minutes: “Imagine

that you are writing a scientific essay on the topic X. Search and collect

as many relevant scientific documents as possible that you find useful for

this essay. During the task, please, list what you think are the top five key

technologies, persons, documents and research areas and write five bullet

lines, which would work as the core content of the essay.”
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In this study, we followed a within-subjects experiment design2 , counter-

balanced by changing the order of the two tested interfaces, as well as

the order of the two tasks. We recruited ten participants who performed

the task using an iPad tablet. Before starting the main tasks, users

received detailed instructions on how to use the interface and performed

a five-minute training task on each interface. For text entry, we relied

on the native virtual keyboard of the tablet. At the end of the sessions,

participants were asked to answer the UES and SUS questionnaires for

each interface.

We measured effectiveness, in other words, the quality of the information

retrieved and displayed by the system, by computing usual metrics in

information retrieval that are Trecision, i.e., found relevant information

over all found information; Recall, i.e., relevant information found over

all available relevant information; and F-measure, i.e., a single measure

that combines both Recall and Trecision3 In order to understand and

compare users’ search behavior, we analyzed participants’ search trails

using a method resembling White’s [White and Morris, 2007]. In a similar

manner, we looked for descriptive statistics of the search trails by selecting

six parameters relevant to both interfaces:

• Number of queries: the total number of queries that were submitted

during each task on both interface.

• Number of text entries per query

• Number of revisits: The number of revisits to a query or stream consulted

2A within-subjects experiment means we relied on the same pool of participants
for testing both experimental conditions, as opposed to between-subjects, which
would imply distinct pools of participants for testing each condition. Within-
subjects experiment designs require less overall participants while minimizing
random noise introduced by individual personalities, however, they require some
care to avoid participants to transfer acquired knowledge from the first tested
condition to the next. To that end, we carefully balanced among participants the
order of the tested conditions, as well as the provided topics to be explored.
3The F-measure is especially useful when comparing two conditions, as Precision
and Recall are generally involved in a trade-off. A system that displays every
available item from the data after a query would measure perfectly in Recall, as
all relevant items would have been retrieved, but would be unusable since the
Precision measure would be very low, as these items would be lost in a sea of
irrelevant ones. While a system that returns only one relevant item would have
perfect Precision but very low Recall. The F-measure therefore measures any
benefit beyond such trade-off.
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earlier in the current trail.

• Number of branches: The number of times a subject revisited a query or

stream on the current trail and then proceeded with the formulation of a

new query.

• Number of queries per minute: the number of queries per minute that

were submitted during each task on both interface.

• Number of parallel queries: Number of parallel streams produced with

ExplorationWall or number of tabs opened with the baseline.

We also measured usability and engagement through standard ques-

tionnaires: System Usability Scale (SUS) [Brooke et al., 1996] and the

User Engagement Scale (UES) for exploratory search [O’brien et al., 2014].

SUS consists of a ten-item questionnaire and is a widely used and vali-

dated for measuring perceptions of usability. Since the degree of user

engagement is a strong indicator of exploratory search performance

[White and Roth, 2009], we chose to use UES for exploratory search, con-

sidering six different dimensions: Aesthetics, Focused Attention, Felt

Involvement, Perceived Usability, Novelty and Endurability aspects of the

experience.

4.1.3 Findings

Effectiveness: ExplorationWall shows substantial improvement in effective-

ness in the long task. The improvement was found to hold for task-level

measurement, but also for averaged interaction-level measurement for

which the recall and the F-measure were found to be substantially higher

compared to the baseline (Figure 4.3). These measures indicate that, on

average, participants covered more ground over the given topic of interest

using ExplorationWall when compared to the baseline, without sacrificing

any precision or quality in the search results. No significant differences

between the systems were found in the short task or in the expert ratings.

Search Trail Analysis: The users in the ExplorationWall condition were

found to use all of the measured interaction features significantly more

than the users in the baseline condition in the long task. Differences were

also found in the short task. The users in the ExplorationWall condition

typed less, branched more, and used more parallel queries.
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Figure 4.3. The effectiveness results showed a significant advantage for ExplorationWall
in Recall, i.e., the amount of relevant documents that were found over all
relevant documents available, while Precision, i.e., amount of found docu-
ments that were relevant over all found documents, showed non significant
differences, resulting in an overall significantly better F-measure, i.e., the
harmonic mean of precision and recall. Such results show that participants
covered more of the explored topic using ExplorationWall.

Usability and Engagement: The results for the mean of answers of

the SUS questionnaire showed a significant difference between the two

systems, revealing higher usability for ExplorationWall. The results of the

UES questionnaires are also favorable for ExplorationWall.

The difference in recall proves that more relevant documents were re-

trieved when using ExplorationWall, which can be explained by our mea-

sure of a more active search behavior that was induced by the use of

ExplorationWall, with more queries per minute and more branching. Such

more active behavior could in other cases be the result of a poor search

performance, where unsatisfying search results force users to frequently

reformulate their query. However, in the present case, the precision mea-

sure proves the quality of each result set was comparable to those obtained

in the baseline.

Furthermore, participants voluntarily avoided to use text entry when

using ExplorationWall, preferring the direct manipulation, which again,

could in other cases be a sign of poor implementation, but the results

from the UES questionnaire also show a better user engagement, a factor

that is likely to have contributed to the more active search behavior, and

validate the hypotheses that the design of ExplorationWall makes the

direct manipulation of entities preferable to conventional text-based search

mechanics.
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4.1.4 Design Implications

Direct manipulation and selection of entities for querying proved success-

ful, in both user preference and search performance. Allowing users to

search for not only documents but various entities helped users make sense

of the information space linked to an unfamiliar topic. Such results val-

idate the entity picking technique for entity search and provides

a suitable alternative to text-based querying when designing fu-

ture touch-based interfaces.

The multiple-stream layout also proved key in fostering insights over mul-

tiple parallel search sessions as suggested by users’ search behavior and

overall better coverage of the explored topic. Users were able to organize

and visualize past and new search efforts simultaneously and voluntar-

ily took advantage of this. These results indicate the importance of

valuing search efforts instead of considering it as ephemeral, by

facilitating storing, organization and visualization of found infor-

mation.

4.2 IntentStreams: Querying Through Parallel Search Intent
Modelling

As explained in the Introduction, typed queries rely on a user’s current

knowledge, thus creating limited opportunity in exploratory settings for

inputting accurate search intents, since users are often plunged in unfa-

miliar information environments. Allowing the system to receive relevance

feedback from the user regarding the perceived quality of individual re-

sults to a query is a known method for improving the expression of a user’s

search intent, however the lack of possibility for inputting the reason for

a any result’s level of relevance requires the user to go provide a lot of

feedback for it to be effective.

An enticing workaround would be to present the user with a represen-

tation of her search intent as perceived by the system, that she can in

turn tweak so that it better matches her actual intent. Such an approach,

commonly referred to as a User Model consists of creating a dynamic

template of the user and infer in real-time her knowledge through her

actions [Suchman, 2007]. Applied to search activities, this technique is

referred to as Interactive User Intent Modelling by Ruotsalo, Głowacka,

and colleagues, and has proven effective in exploratory search tasks
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[Ruotsalo et al., 2013a, Glowacka et al., 2013].

User intent modeling takes an initial typed query to return a result set

of documents. From this set, the system extracts a set of entities that are

most representative of the set of retrieved documents, and weights these

entities according to their estimated relevance. These entities represent

the intent model, which is presented to the user who can modify individual

weights, e.g., increase or decrease their relevance, or completely discard

them. The system then refreshes the results to better reflect the updated

intent model.

This technique offers a slightly different way of supporting query formu-

lation compared to entity picking: Providing relevance feedback on a set

of entities is more input heavy and could hinder the overall fluidity of the

exploration. Also, by providing only entities extracted from the retrieved

set, the technique creates limited opportunities for branching away from

the initial topic.

For this reason, we were interested in applying this technique while

supporting parallel sessions and support the transport of entities from one

session to another. To that end, we decided to reuse the overall structure

provided by the user interface of ExplorationWall in section 4.1 and adapt

it for the new prototype, referred to as IntentStreams (IS).

The evaluation results of ExplorationWall showed that the parallel search

streams configuration fostered a more active exploratory behavior, with

participants being more aware of past search results as measured through

the number of revisits and branching of the exploratory path. We were

interested in further investigating such an effect on users’ exploratory

behavior. Since the focus was not specifically on supporting exploration on

touch devices anymore, and to allow comparison to a baseline consisting

of a naturalistic search setting, the system should support entity based

interaction, but yield the same document-based results as the baseline.

Following is a summary of the main requirements for the design of

IntentStreams:

1 The prototype should support direct manipulation of entities and re-

trieve document-based document set.

2. A user model was to be implemented in the form of a set of weighted

keywords.

3. Querying was to be done through relevance feedback.

4. The prototype should support parallel search streams and support the

transport of entities across search streams.
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Figure 4.4. The user interface of IntentStreams. The first query, in this case mobile
display (a), returns a search stream consisting of news articles most relevant
to the query (b), as well as a set of most relevant keywords extracted from a
larger set of related articles (c). These keywords represent the user model,
or how the system perceives the user’s search intent. The user can modify
the weight of the keywords by sliding them vertically, thus emphasizing or
reducing their desired importance (d), after which the stream will refresh,
updating articles and keywords accordingly.
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If dropped outside their initial stream, keywords will either trigger a new search stream
(e) or be passed to an already existing parallel stream. Articles can be consulted by clicking
on their title, which opens a reading panel.
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4.2.1 Overview of the System

We refer to the present prototype system as IntentStreams. In the instance

of the prototype that was used for evaluation, it was connected to a repos-

itory of English language editorial news articles crawled from publicly

available news sources. The database contained more than 25 million

documents.

The documents were originally collected for monitoring media presence

of numerous interested parties, hence the collection’s wide variety of topics.

The User Interface

IntentStreams provides a workspace divided into two areas: the keyword

area at the bottom and the document area on top (Figure 4.4). By clicking

on the workspace, the user is prompted to type an initial query (Figure 4.4

a). That query yields two sets of elements: A ranked set of news articles

displayed through their titles is listed vertically in the document area

(Figure 4.4 b), while below, in the keyword area, the typed query has split

into a variety of keywords, i.e., the user intent model (Figure 4.4 c).

These keywords, between five and ten4, are separated horizontally for

legibility, and positioned vertically according to their estimated relevance,

the higher the more relevant. We refer to such a vertical arrangement of

documents and keywords as a search stream.

Clicking, on a news article title will reveal its content on top of the result

list. Click-and-holding a news article will highlight in the intent model the

keywords directly related to the article (rarely will a found article relate

to all keywords in the intent model simultaneously). In a similar fashion,

click-and-holding a keyword will highlight related articles.

Keywords can be moved vertically to adjust their desired level of rele-

vance (Figure 4.4 d). Keywords that have been manipulated will change

color, and a validation button will appear for triggering the update of the

results, which allows the user to adjust several keywords before triggering

any change.

Additional search streams can be created by clicking on the workspace,

anywhere outside of an already existing stream. This allows a user to

compare the results in parallel search sessions. Parallel search streams

4The user intent model shows only extracted keywords whose estimated relevance
is above an arbitrary threshold, set through trial and error, hence the variable
amount of displayed keywords. Therefore only the most representative keywords
are displayed to limit overwhelming visual clutter.
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each exhibit their own set of articles and user intent model. Any keyword

from one intent model can be transferred to a parallel one. A keyword can

also be dragged outside of an existing search stream, which will trigger

the creation of a new stream (Figure 4.4 e).

The workspace can be scrolled horizontally to make space for additional

search streams and not be limited by the boundaries of the display, with

the effect that after creating a sequence of search streams, the horizontal

layout will often reveal the search history of the session. Search streams

can also be dragged and rearranged horizontally.

4.2.2 Overview of the Study

We evaluated the system to find out if and how IntentStreams supports

parallel browsing and branching behavior. IntentStreams was compared

against a baseline system with an interface similar to a traditional Google

search interface (see Figure 4.2 as it was the same baseline system we

used for evaluating ExplorationWall in section 4.1). Our hypothesis was

that, compared to the baseline, IntentStreams generates (1.) more parallel

streams, (2.) more revisits, and (3.) more branches. We used the following

metrics: the number of parallel streams, number of revisits, and number

of branches.

In the baseline, the number of parallel streams denotes the number of

tabs opened, a revisit indicates returning to an already open tab, and a

branch denotes a query updated after a revisit. In IntentStreams, a revisit

occurs when a user performs certain activities (opening an article, weight

change) on a previously created stream. A branch occurs when a new

stream is created from an existing one. That includes both creating a new

query by dragging a keyword or updating the existing stream by modifying

the weights of its keywords.

We evaluated the system with thirteen volunteers. We used a within-

subject design, where participants were asked to perform two tasks, one

with IntentStreams and one with the baseline, after each receiving detailed

instructions and having performed a five-minute training session. The

task was formulated as follows:

You have to write an essay on recent developments of X where you have

to cover as many subtopics as possible. You have 20 minutes to collect the

material that will provide inspiration for your essay. You have 5 additional

minutes to write your essay.

The two tasks performed by the participants covered two topics: (1)
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Figure 4.5. Visualization of two search trails resulting from the same participant during a
similar amount of time, once performed using IntentStreams (top), once using
the baseline (bottom). Rows visualize parallel searches while columns show
the user’s sequence of actions. This example illustrates the difference in re-
visiting and branching behavior fostered by each system, with IntentStreams
leading to a much more active exploratory behavior.

NASA, and (2) China Mobile.

To evaluate the system, we connected it to a news repository of English

language editorial news articles crawled from publicly available news

sources from September 2013 to March 2014. The database contains more

than 25 million documents. The documents were originally collected for

monitoring media presence of numerous interested parties, and hence the

collection has wide topical coverage.

The baseline system was connected to the same news repository as

IntentStreams. In the baseline system, users could type queries and

receive a list of relevant news articles. To start a new parallel query, a new

tab had to be opened.

4.2.3 Findings

IntentStreams on average generated 7.84 more queries (SD = 7.27), 6.38

more parallel streams (SD = 4.03), 4.54 more revisits (SD = 4.52), and

3.62 more branches (SD = 4.01). A paired t-test indicated that all those

differences were statistically significant (p < 0.01).

Results show that users created more parallel streams than opened new

tabs. While the system allows the creation of parallel streams, the users

revisit earlier ones consistently.
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With IntentStreams, more queries and parallel streams were created

through branching as seen in Figure 4.5. A visual representation of a

participant’s search behavior shows the difference between the linear

search behavior in the baseline and the more articulated search behavior

in IntentStreams. Further, IntentStreams has shown to better support

exploration, as can be seen from the higher number of queries.

4.2.4 Design Implications

IntentStreams is an example of how to successfully utilize intelligent

agents, in this case, user intent modeling, in a user-driven way that

puts users in control and allow them to tinker and explore the results.

Direct manipulation and selection of entities for querying proved successful

again, and the study confirmed the benefits of having multiple-stream

layout in fostering insights over multiple parallel search sessions as

suggested by users’ as the search trails proved richer and less linear,

demonstrating better overall coverage of the explored topic by participants.

4.3 Contribution

The aim of this chapter was to answer RQ1: How can entity-based querying

benefit information exploration? User experiments with ExplorationWall

yielded substantial results, demonstrating that entity picking could rival

and even outperform conventional text-based querying in search perfor-

mance, while having a positive effect on search activity, behavior and

engagement. With IntentStreams, we investigated an alternative tech-

nique through user intent modeling and relevance feedback, more input

heavy, while further reducing differences between the prototype and a

naturalistic baseline condition and we still obtained significantly positive

results regarding search performance and engagement. Both these results

comforted our confidence in the potential of entity-based affordances for

information exploration and brought satisfactory answers to RQ1.
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5. Enabling Orientation in the
Information Space

Exploratory activities rely on search and discovery, but in a larger context,

in which knowledge and intents keep evolving. Information exploration

by definition describes open-ended and potentially long-term activities.

As such, the temporal and spatial components of exploration are usually

provided with little support in our information practices, because of tools

that tend to consider search as an ephemeral single-user activity.

Orientation – the knowledge of one’s location in relation to one’s sur-

roundings – is necessary in making a conscious decision of where to go

next, which makes it a crucial ability in getting the most benefit from

exploration. Unfortunately, orientation is made difficult by search tools

returning narrow slivers of the information space, ordered according to

hidden criteria.

With our larger goal in mind – translating properties of spatial explo-

ration into the information space – we were interested in designing and

investigating visualizations that would provide users with a map of such

space.

The biggest challenge lies in the high multi-dimensionality of any infor-

mation space: the semantic distance between elements depends on so many

criteria that any attempt of absolute translation into two or even three di-

mensions suitable for visualization purposes, would be highly inconsistent

and unusable.

The available solution was to let the user determine criteria relevant

to her needs or interests so that the mapped information space is specific

to a user and a given context, e.g., a given project or time. Entities and

entity-based querying seem convenient in not only expressing a search

intent but also letting a user define and demarcate an information space

that is relevant to her interest, following a number of criteria that make it

manageable to visualize and explore.
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A resulting limitation of such an approach is that enabling orientation for

one given user in one given context only partially addresses the challenge

at hand. Therefore, a remaining challenge was to investigate techniques

for users to share such information spaces and find common ground.

This chapter reports on the design of two prototype systems designed to

support defining coherent information spaces through entity affordances.

The first one, summarized in Section 5.1 and reported in Publication III,

implements information mapping for exploration and allows investigation

of its benefits. The second one, summarized in Section 5.2 and reported in

Publication IV, allowed us to investigate the possibility of finding common

ground in collaborative exploration through entity-based affordances. Both

systems and their user-based evaluation brought satisfying answers to

RQ2: How to demarcate and visualize a coherent information space through

entity-based affordances?.

5.1 RelevanceMap: Multidimensional Perception of the Information
Space

Chapter 1 has addressed the limitations of one-dimensional ranked lists

of results and how they fail at providing a meaningful overview of the

result space. Multiple simultaneous criteria allows for rich mapping of

the result space, while at the same time allows the user to demarcate

the information space through entity-based querying. By limiting the

mapping to user-defined criteria, the mapped information space becomes

a subset of the available data set. Remembering the Information Fla-

neur [Dörk et al., 2011], the desired resulting information map should be

reminiscent of a city, with boundaries as gates, consisting of user-defined

criteria; more or less semantically consistent or diverse areas as districts;

and opportunities to constitute parallel sets of criteria, like paths to neigh-

boring cities.

To that end, the design or RelevanceMap had to follow the following

requirements:

1. Possibility for a user to arrange criteria in the form of manipulable

entities on a map.

2. Have the system return all available relevant information.

3. Have retrieved information visually encoded on the map as a topology,

with respect to the user-defined criteria.

4. Allowing through interaction with the map, the progressive exploration
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of chosen areas of the map by revealing location-relevant information

content.

5.1.1 Overview of the System

The User Interface

The user interface of RelevanceMap (Figure 5.1) consists primarily of a

map area (Figure 5.1 a), with a companion panel on the right for displaying

search results (Figure 5.1 b). The map area contains a text input field

(Figure 5.1 c). Typing a phrase in the input field adds it as an interactive

entity (Figure 5.1 d) on the map that can be freely repositioned. Repeating

this process, a user can input multiple query phrases describing topics or

areas of interest, and arrange them on the map. After each phrase input,

the system retrieves from the data set all documents that relate to one or

several of the query phrases. The number of retrieved documents being

possibly quite large, possibly in the thousands or more, it is not possible to

inspect them all at once. Therefore, these documents are instead displayed

on the map as a visual marker.

Document markers each take the form of a semi-opaque dark circle with

a distinct location and radius (Figure 5.1 e). The location of a document

marker depends on the individual relevance estimation of the document

to each of the query phrases. The positioning of a document marker can

be described by the effect of springs, that would link each query phrase to

the document marker (Figure 5.1 f). The higher the relevance estimation

of the document to the query phrase, the stronger the spring. As a result,

the more semantically close a document is to a query phrase, the more

spatially close its marker gets.

Since the end location reveals only relative relevance, i.e. a document

with nothing but very weak relevance scores to each of the query phrases

can share the same position as a document with strong relevance scores,

we have introduced the notion of overall relevance, which is the sum of

all the relevance scores of a document. This value is then encoded as the

radius of the document marker.

The transparency and variable radius of all document markers together

contribute to building a topography of how a document set is populated with

respect to a user’s interests. The superimposition of document markers

creates darker areas informing the user of a high density of information,

while light and white areas indicate a gap in the semantic distribution.
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Figure 5.1. The relevance map displays documents in relation to multiple entities, dis-
played as red text labels (d). The exploration cursor (g) is located at the
user-specified position to be used for the re-ranking of all related documents
in the right panel (b).
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Initially, the result list displays all related documents in a long list, ranked

according to the overall relevance of each document. Exploring the content

of the map and accessing documents of choice requires the user to tap

somewhere on the map, to position a cursor (Figure 5.1 g) inspired by the

one used in Google Maps. This cursor tells the system what area of the

map the user is interested in discovering. As a result, the system re-ranks

the list of all related documents in a way that prioritizes the ones whose

markers are in the vicinity of the cursor. Details of the methods used to

compute the visualization and re-ranking are provided in Publication III

[Klouche et al., 2017].

The actual method through which the ranked list is computed takes

into account both the marker-to-pointer distance and the overall relevance

value of each document. The system then re-ranks the complete list of

retrieved documents according to these values.

The pointer can be re-positioned by dragging or tapping on the map. Any

change in the pointer position or query marker organization triggers a

re-ranking of documents based on their overall relevance and proximity to

the pointer.

The ranked articles appear in a conventional one-dimensional scrollable

list layout in the result panel, with title, authors and publishing informa-

tion, abstract and keywords. Keywords from the results panel are readily

usable as interactive entities and can be dragged to the map to become

new query phrases (Figure 5.1 h).

5.1.2 Overview of the Study

Twenty participants took part in a controlled laboratory experiment in

which RelevanceMap was compared to a conventional ranked list visual-

ization in two basic tasks: perception and retrieval.

The perception task sought the understanding of the benefits of the

visualization in perceiving the distribution and density of resulting docu-

ments with respect to multiple query phrases. The retrieval task sought

the understanding of the benefits of the visualization in re-ranking the

results according to a user-specified distribution over the importance of the

different query phrases. The benefits were measured with respect to task

completion time and effectiveness (quality of the perception or retrieval).

The perception task aimed to measure task completion time and effective-

ness, to help understand how a document space is populated and organized

with respect to specific query topics. Participants were asked the two
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Figure 5.2. In the perception task, participants must identify the two and three keywords
out of four that are the most related to relevant information. In the baseline (a),
they must skim through the ranked list of results to infer the most prevalent
keywords from the top articles. Using the relevance map, they must interpret
the distribution of document markers. In the retrieval task, participants must
find an article that shows a high relevance to one keyword (say, tabletop), and
a lesser relevance with two other keywords (say, tangible and interaction).
Using the baseline (a), they must query the three keywords, then find a fitting
article in the result list. Using the relevance map, they point (by tapping
on the touch-enabled monitor) at an area between the three keywords (c1),
somewhere closer to tabletop than tangible or interaction, which triggers
a re-ranking of retrieved articles based on the selected position (c2). The
participant should be able to select one of the top articles as a fitting task
outcome.
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following questions: (1) “Out of the 4 topics provided, which 2 topics are

related to the highest amount of relevant documents?”, and (2) “Out of

the 4 topics provided, which 3 topics are related to the highest number of

relevant documents?” (Figure 5.2).

The retrieval task aimed to measure task completion time and effec-

tiveness in finding documents with varying multi-dimensional relevance

toward several topics. Participants were given the following instruction:

“Find one article that is highly relevant to Topic A and slightly related to

Topic B and Topic C.”. The task was then repeated one more time with a

different topic priority: “Find one paper that is highly relevant to Topic B

and slightly related to Topic A and Topic C.”

5.1.3 Findings

The results of the experiments show significant improvements in task

completion time in both perception and retrieval, without compromising

effectiveness.

Figure 5.3. Results from the performance measures displayed for both systems with
confidence intervals for: (a) task completion time in the perception task and
(b) task completion time in the retrieval task with the mean duration (lower
is better), (c) effectiveness in the perception task with the mean topic quality,
and (d) effectiveness in the retrieval task with the mean document quality
(higher is better).

In the perception task, participants were able to use the relevance map

visualization to make decisions with greater accuracy and 111% faster.

The visualization allowed the participants to understand more accurately

the distribution of information with respects to the multiple aspects of the

query.

In the retrieval task, documents fitting complex criteria were retrieved

70% faster using re-ranking through interaction with the relevance map.
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While finding documents with different relevance to several topics requires

users to go through long lists of results and assess the relevance of individ-

ual documents, our proposed method for re-ranking through pointing at

the map successfully narrows down the top results to documents that fit

the criteria.

The quality of the task outcome was the same in both conditions in the

retrieval task. A possible reason for equal performance is the absence of

strict time constraints for participants to complete the tasks. It is possible

that a constrained time to complete the task would have negatively im-

pacted the quality of the task outcome for the baseline, as the participants

would not have been able to carefully examine the list to find a fitting

article, but would have been forced to skim, resulting in possibly lower

quality of selected topics and articles.

5.1.4 Design Implications

While the relevance map utilizes a similar result list component as the

baseline system, the visualization, and the possibility to quickly re-rank

the results help avoiding the trap of the ten blue links. The simplicity

of the search engine is here substituted by a necessarily more complex

behavior, but users showed an encouraging adaptability and enthusiasm

to the new paradigm. This suggests that richer user interfaces for

accessing information can be accepted and worth being explored.

5.2 QueryTogether: Collaborative Orientation

Search is often thought of as a solitary user activity, focusing on eliciting a

user’s information needs and improving search-result relevance. Recently,

increasing attention has been devoted to search as a collaborative activ-

ity that is often co-located, spontaneous and initiated informally from a

dialogue [Brown et al., 2015, Morris et al., 2010]. Users are inspired or in-

formed by others’ searches and can distribute search efforts, exploring the

information space in parallel. Despite the increasing number of situations

in which several co-located people engage in collaborative search, avail-

able devices, and public screens are not effectively used for synchronous

collaboration.

Section 5.1 makes the case for dynamic mapping of an information space

to make it relevant to a specific context and user. In the case of collabora-
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tion, this raises the question of how entity-based techniques for demarcat-

ing an information space of interest can be used effectively among multiple

users. To investigate the question, We wanted to focus on a common ubiq-

uitous computing scenario in which several co-located users spontaneously

engage in collaborative search, using personal devices as well as available

large screens or projectors. In particular, we investigate how entity-based

user interfaces and search systems can facilitate collaboration across such

devices.

5.2.1 Design Rationale

• Entity-centric exploration. The units of search and collaboration can be

any information entities – such as documents, keywords, and authors

– that can be shared for collaboration or used as queries to trigger ex-

ploration. The design should also provide different starting points for

exploration, including not only entities suggested by peers but also en-

tities suggested by the system. System suggestions should be provided

every time a new query is triggered, so users are always provided with

possible directions for future exploration. In both cases the suggested

entities should be encapsulated in interactive search objects that can be

directly used to trigger new queries and explore new directions.

• Flexible use of devices. To study the effect of entity-centric exploration in

a scenario that reflects the current trends as closely as possible, one de-

sign goal is to make the system usable from a variety of devices and thus

support different modalities (e.g., mouse and touch) and different plat-

forms. To facilitate interaction on smaller devices (and on touch screens

in general), the main features such as querying and sharing should not

necessarily require typing. Enabling typing-free interactions may also

prevent unnecessary overhead when accepting system suggestions and

thus lead to less distraction and better exploration.

• Support for diverse working styles. Previous work on co-located col-

laboration has stressed the importance of supporting a variety of

working styles ranging from individual work to tight collaboration

[Scott et al., 2004, Tang and Joiner, 2006]. It is important to allow for

various degrees of coupling as at times, the work is more efficient if it

is performed by an individual or loosely coupled. This is also important

due to the fact that in some instances, it might be appropriate to allow
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for maintaining the privacy of the information being manipulated by

participants [Stefik et al., 1987]. Moreover, the system should allow for

flexible switching between different working styles. Users should have

the option to work independently and to decide if and when to share

and whether to share privately or publicly. While this could lead to

more effective collaboration [González-Ibáñez et al., 2013], it could also

be beneficial from a privacy perspective, as users decide what to share

without needing to disclose their entire search log.

5.2.2 Overview of the System

The User Interface

Since QueryTogether adapts the user interface from ExplorationWall,

this section will focus on describing the specific features enabling col-

laborative use. Please refer to subsection 4.1.1, or to Publication IV

[Andolina et al., 2018a] for the full description of the interface.

As seen on Figure 5.4, The side panel/reading list, already present in

ExplorationWall, now additionally displays at the bottom the user list,

where each user’s name is displayed as a label along with his or her share

status, i.e., “public” for shared devices and common workspaces, or “private”

for users with individual/private devices. In the prototype implementation,

the status was to be selected at login, along with a user name.
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Figure 5.4. The user interface of QueryTogether. Differences with the ExplorationWall
system include: (a) The reading list is now a share history and contains
simultaneously entities bookmarked by the user, as well as entities received
from collaborators. Their origin is indicated over the entity. (b) The user list
shows online collaborators and the status of their device to differentiate at
a glance between shared public screens and private devices. Entities can be
shared by dragging them to the desired recipient in the user list.

78



Enabling Orientation in the Information Space

79



Enabling Orientation in the Information Space

Sharing is performed by dragging an entity onto the chosen recipient in

the user list, as seen in Figure 5.5. The recipient will instantly receive a

new instance of the sent entity in her side panel. If the side panel is closed,

a visual notification in the corner informs the user of the number of new

entities received. Next to each user label, a “Message” icon allows the user

to send a short message along with an entity.

To facilitate exploration based on saved and shared entities and docu-

ments, the reading list/share history can be filtered according to a chosen

collaborator, simply by tapping his or her name. Filtering based on a collab-

orator that uses a personal device will show only entities and documents

sent to and received from that user. Filtering based on the moderator, or

any collaborator using a public workspace, e.g., through a shared monitor,

large screen or projector, will display the content of the common collection

shared among all users. Filtering based on one’s own name will display

only entities that have been saved locally and ignore anything sent or

received remotely.

Figure 5.5. This sequence illustrates the coordination and exploration process between
collaborators: a) From the results of a search, User 1 chooses an entity - in
this case, a keyword - to send to User 2. User 1 drags the chosen entity to User
2’s label in the user panel. b) The received entity appears in User 2’s reading
list along with information on the sender and the time it was sent. User 2 can
then use it as an exploration trigger to start a new search stream by dragging
the received entity to the query area. c) In the same way, entities can be sent
to User 3. In this case, User 3 uses the system on a common workspace on a
big screen and is set as public, so entities on the big screen are shared with
all collaborators.

Example Scenario

Max, Anna, and Oscar are three computer science students. They have

teamed up to present a common project in the context of a workshop on the

semantic web. They meet to look for ideas as they only have a superficial

knowledge of the topic. Max and Oscar take out their tablets, while Anna

takes control of the shared large multi-touch screen, assuming the role of

the public user and moderator of the session.
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As they each log on to the collaborative search system, their names stack

up in the user list on each device. They agree to start by exploring the topic

of “semantic web” at large, to find inspiration and become more familiar

with related subtopics. Anna starts by tapping somewhere in the query

area of the shared screen, which opens a local text box. A soft keyboard

pops up, with which she types “semantic web.” Based on that query, the

system returns a variety of related documents and keywords organized

in a vertical stream. They discuss and review the keywords suggested

by the search engine that seem to be the most central. They eventually

agree that Oscar will further investigate the topic “ontologies” while Max

will explore “web mining.” On the shared screen, Anna drags the keyword

“ontologies” from the result stream to the user label “Oscar” in the user

list. A new instance of the keyword appears instantly in Oscar’s side panel

with the mention “Shared by Anna (Moderator) at 10:36:17.” Anna then

does the same with the keyword “web mining” to Max. Without having

to type anything, Oscar privately drags the freshly received keyword on

his device toward the query area, which returns a new stream of articles

and keywords all related to “ontologies”. He reads the abstracts of the

retrieved articles and performs a few follow-up searches based on the

related keywords. The new result sets appear as parallel streams on his

interface, allowing him to compare their contents. In the same way, Max

explores information related to “web mining.”

As they both encounter interesting documents and keywords, they send

them to the large screen by dragging them over to Anna’s user label. After

a little while, they decide to stop collecting new material to discuss the

shared content. Anna leads the discussion on the large screen. As they

review the outcome of their individual searches, they agree on which

documents to keep in the list and which to dismiss. To remove an entity

or a document from the list, they simply drag it out of the side panel. In

the end, all three participants share the same collection of a few highly

relevant documents that will make for an excellent basis to start their

project.

5.2.3 Overview of the Study

We evaluated QueryTogether to investigate the type of improvement such

a system could yield relative to a baseline condition that would replicate

a realistic conventional collaborative exploratory setting. The study was

aimed at providing understanding regarding the following aspects:
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Figure 5.6. Experimental setup

Effectiveness: Does QueryTogether improve the search session effective-

ness of retrieved information when compared to the baseline system?

Collaboration: Does QueryTogether enhance collaboration or lead to a

more balanced contribution within the group of participants when com-

pared to the baseline system?

Engagement: Does QueryTogether lead to more engaging search behavior

when compared to the baseline system?

Additionally, we aimed to investigate potential changes regarding the use

of searchable objects/entities, style, and heterogeneous devices:

Entities as searchable objects: What is the extent of use of entities as

searchable objects in conversation or through the use of QueryTogether?

Collaboration styles: Does the collaboration differ in tightly or loosely

coupled work styles or transitions between these?

Heterogeneous devices: Are there differences in how participants attend

to the different devices?

The study followed a within-groups design with nine groups and two

system conditions. Nine in-person teams of three people were assigned

a collaborative search task (Figure 5.6). The system conditions were the

full QueryTogether and a baseline version of the system that did not have

the design features of QueryTogether. Each group performed two tasks:
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one with the support of QueryTogether and one with the baseline. The

conditions and tasks were counterbalanced by changing the order in which

the two tasks were performed and the order in which the groups were

subjected to each condition.

Figure 5.7. Baseline system replicating a conventional search interface while using the
same backend as QueryTogether.

The baseline illustrated in Figure 5.7, was implemented based on this

rationale. The baseline was a control condition that mimicked the conven-

tional search interfaces, allowed for isolating confounding factors related

to data or search engine functionality, and enabled the users’ de-facto

collaboration practice to be conveyed by combining the baseline system

with the tools that the participants would use in real-life situations. We

selected Google Docs as the information gathering and sharing platform,

as this is the most commonly used collaborative platform available and the

participants were likely to be familiar with the platform.

Two of the participants sat in chairs with an optional table, and the

moderator sat at a separate desk. The three participants were placed in

a triangle facing each other at a distance of approximately 2 meters to

make it easy to see each other and communicate. When using the baseline,

all participants used laptop computers. When using QueryTogether, two
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participants used tablets, and the moderator used a laptop computer. In

both conditions, the moderator’s computer was mirrored onto a large screen

that faced the other two participants.

The participants had twenty minutes to complete the task with each

system. After completing the task, participants were asked to fill out the

User Engagement Scale questionnaire. The entire experimental session

lasted about 80 minutes.

5.2.4 Findings

A first finding to highlight is a confirmation of the results obtained through

the ExplorationWall study. As tasks pertaining to exploratory search

are generally easier to perform on a desktop computer due to intrinsic

limitations of touch-based devices [Singh et al., 2011]. Our measure of

recall over time shows that QueryTogether, like ExplorationWall, allowed

participants to be as effective with tablets as with laptops and conventional

search tools. We also observed the same reduced need for typing, with

53% of search terms created by dragging and dropping entities into the

query area, which emphasizes the utility of providing support for query

formulation, and indicates that, when given the opportunity, people tend

to prefer direct manipulation to typing on soft keyboards.

Figure 5.8. Measure of subtopic-Recall (S-Recall) [Zhai et al., 2015] over time averaged
across groups. The curve shows how relevant elements were found earlier
using QueryTogether, indicating a better distribution of work, with the positive
consequence of leaving more time for discussions.

Analyses of effectiveness and verbal activity showed that most of the

relevant subtopics were found sooner by participants using QueryTogether

when compared to the baseline condition, as shown in Figure 5.8, which

enabled more time for discussion and establishing a common ground. It
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also revealed how, with QueryTogether, collaboration strategies typical of

collaborative exploratory search, e.g. division of labor or establishing a

common ground, were better supported through the availability of entities

as searchable objects. We also observed that QueryTogether supported

a more flexible coupling [Dewan and Choudhary, 1991], meaning that the

system made it easy to switch between phases of individual work with

little coordination involved, and phases of tightly coupled collaboration, in

which participants engaged in intense verbal communication.

Previous research shows group awareness as a positive factor in the coor-

dination of actions, anticipation, and assistance provided to collaborators

[Gutwin and Greenberg, 2002]. Our results suggest a higher group aware-

ness has been achieved as the higher lookup rate at the shared display

indicates. Moreover, the higher awareness of publicly shared information

suggests the system supported the creation of a common understanding.

Such interpretation is also supported by our results on verbal usage of en-

tities, revealing that more time was spent in establishing common ground

when using QueryTogether, by sharing prior knowledge on entities, asking

clarification questions, explaining, and reporting activities performed with

entities.

5.2.5 Design Implications

The main question regarding the design of QueryTogether was the use of

entities to demarcate information spaces collaboratively. Participants

successfully shared entities as a means to understand each other

and find common-ground, they also were able to naturally come up with

flexible strategies to alternate between individual and collaborative work,

on top of confirming individual benefits observed using ExplorationWall in

section 4.1.

5.3 Contribution

The aim of this chapter was to answer RQ2: How to demarcate and visual-

ize a coherent information space through entity-based affordances?. User

experiments with RelevanceMap showed how mapping of information can

be achieved to provide users with the means to perceive the information

space in a way that is semantically consistent. As a result, we observed

participants performing effective orientation leading to efficient discovery
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of information related to complex criteria. User experiments with Query-

Together allowed us to better understand how entity-based affordances

could support exploration by multiple users collaborating in a common

information space, helping them distribute the work and find common

ground. Together, these results provided satisfactory answers to RQ2.
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6. Enabling Entity Affordances Across
Environments

We have established that information exploration is long-term, and relies

on insights from many sources, including active search, serendipitous finds

online and offline, conversations, etc. However, the lack of consistent and

direct communication between various sources of information results in a

burden for the user who must overly rely on her memory to make sense of

encountered information and get a sense of context out of it, which creates

few opportunities for insight and contributes to unnecessary cognitive load.

We describe this problem as pertaining to continuity in the information

space.

It is clear how the affordances proposed so far can function within one

application. However, to be useful, such affordances should potentially be

harnessed beyond such a limited environment. For that reason, the next

logical step is to investigate the potential for enabling these techniques

across various applications, e.g., browser, email client, ebook reader, but

also beyond the digital realm, by exploring techniques to channel physical

or temporal resources, such as conversation-sourced information, into

entities to be interacted with.

We decided to address this continuity problem through the implemen-

tation of proactive systems, able to monitor an active situation, e.g., a

conversation, writing of a report or planning of a trip, and from the data

acquired, the system proposes entities that can then be interacted with,

shared, or integrated to a visualization and used to steer and further the

exploration.

This chapter reports on three separate systems. The first two, summa-

rized in Sections 6.1 and 6.2 and reported in Publication IV and Publication

VI, use speech recognition technologies to provide proactive help and entity

recommendation to users engaged in natural conversations. The last sys-

tem, summarized in Section 6.3 and reported in Publication VII, visually
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monitors a user’s activity across digital applications, makes inferences

regarding the tasks at hand, and finally proactively provides recommen-

dation on various entity types. The three systems are summarized in the

following sections, as well as their respective evaluation. Together they

provide a rich exploration of techniques for enabling continuity in the

information space, therefore providing satisfying answers to RQ3: How to

benefit from entity-based interactions for exploration beyond self-contained

systems?.

6.1 InspirationWall: Topic Recommendation Through Speech
Recognition

As a proof of concept, we first wanted to develop a minimal system that

would positively influence the outcome of a conversation, as a basis for

more complex systems. With that in mind, we settled on augmenting an

ideation – or brainstorming – session. In such sessions, participants try

for a limited time period to come up with as many ideas as they can on a

given topic or with a few given constrains, while deferring judgment and

avoiding censoring themselves. Such focus on quantity over quality often

yields silly ideas that can however trigger insights and novel associations.

The same focus on quantity over quality is also something that can easily

be emulated by a digital agent, that would use expressions pronounced

by human participants as queries to retrieve additional topics that would

then fuel the session. As unexpectedly interrupting the participants would

obviously be counterproductive, we strived to design a system that could be

consulted any time with minimal effort, while being completely unobtrusive

when not needed. We were interested in understanding if, in such a limited

setting, participants would make use of the system, and if input from the

system would influence the session in any positive way.

6.1.1 Overview of the System

InspirationWall has been designed to be a supplementary participant in

group ideation meetings. A system that “listens” and contributes in a way

that does not interrupt the flow of ideas. Therefore, the system required

minimal interaction from users/co-participants. The visible part of the

apparatus consists of a screen and a microphone. The system continuously

monitors an ongoing conversation. The audio is transcribed into text in real
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Figure 6.1. User Interface in situ. Words related to the ongoing conversation fall slowly
across the display, ensuring a constant flow of new topics.

time1. From the text, significant words are isolated and used as a query in

a search system – which uses the same backend as ExplorationWall – to

retrieve related keywords to be displayed.

Visually, the InspirationWall (Figure 6.1) user interface has a dark back-

ground with, at first, nothing but a small microphone icon blinking in

the upper left corner to indicate the system is active and listening. When

significant words are heard by the system, and related keywords found,

these are displayed in a silent “rain of words”: words appear at fixed inter-

vals from the top edge of the screen, at a random horizontal position, and

moves down at a slow, fixed speed. This provides a slow continuous stream

of words to potentially enrich the ideation session, without disturbing it

through sudden changes or sounds. The system is conceived as an aid, that

1The technique used for automatic transcription of natural speech is detailed in
Publication V [Andolina et al., 2015a].
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Figure 6.2. Experimental setup

can be consulted or ignored depending on each participant’s need.

6.1.2 Overview of the Study

We conducted a study with six pairs of participants to evaluate the effects

of InspirationWall on the idea generation process, with the goal of under-

standing whether it helped small groups generate more ideas. Each pair

took place at a table, with the display on one side, as if it was a third

participant (Figure 6.2). Paper and pens were provided. They had twice

twenty minutes to come up with as many project ideas as possible on a

given topic. Once with InspirationWall being active, and another time

without the help of the system. We used two different topics, i.e., robotics

and wearable computing, and we fully counterbalanced both the order and

topics used for both conditions. Participants were recorded through the

same microphone used by the system for the speech-recognition, and a

camera at the top of the screen was taping each session. The alignment

of the camera with the display made it easy to identify occurrences of

participants glancing at the screen.

We measured quantity of ideas over time. Using video and data logs,

we were able to identify individual ideas and the approximate time of

inception. We also counted the occurrences of participants looking at the

display to identify when an idea could be linked to something that was on

display at the time.
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6.1.3 Findings
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Figure 6.3. Accumulation of ideas per condition (BL = Baseline; IW = InspirationWall)
in the different sessions S1,...,S6. On the Y-axis is the cumulative number
of ideas, and on the X-axis is the time from the beginning of the session
(minutes).

Participants were asked to generate ideas but not explicitly to use or

interact with the system which was simply provided as-is. Our study shows

that participants that used InspirationWall more – as indicated by the

count and duration of gazing occurrences obtained through video analysis

– tended to generate more ideas in total and over time, as seen in Figure

6.3. Those results suggest that InspirationWall contrasts the decay of idea

productivity over time – typical of traditional idea generation sessions –

and confirm the effectiveness of automatic information exploration and

keyword suggestion on idea generation.

6.1.4 Design Implications

InspirationWall is constitutes a preliminary, quick and dirty implementa-

tion of a proactive system monitoring conversations. However, our study

shows it as an example of an entity-oriented system that is able to

provide support in information practices taking place outside a

digital environment, which opens a variety of directions for future work,

including allowing richer interactions with such systems.

6.2 SearchBot: Proactive Entity Search

Following the encouraging results of InspirationWall, we were interested

in further exploring how a digital agent could support/influence a con-

versation by providing proactive entity recommendations and contextual
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information. To that end, we needed the setting to be more common and

naturalistic than an ideation session, and we wanted the system to allow

more interaction with the presented information. Therefore we settled on

a natural conversation setting and aimed to develop a system that would

listen to the conversation and provide individual understanding support

by showing entities and links related to what is being discussed, enabling

quick contextual on-demand information.

Figure 6.4. The user interface of the SearchBot system. The system monitors a conver-
sation and provides continuous recommendations of related documents and
entities in a non-intrusive way: On the lower half, a continuous stream of
recognized entities; In the middle, a timescale with timecodes; On the upper
half, sets of recommended entities, i.e., documents and keywords. The user can
go back by sliding the timescale to the left to retrieve past recommendations,
and return to the present by sliding again to the right.

6.2.1 Overview of the System

We designed the SearchBot system to monitor a conversation and provide

continuous recommendations of related documents and entities. SearchBot

listens to conversations through a microphone and a speech recognizer

(i.e., Google Web Speech API). Each detected sentence is then processed

by Google’s Cloud Natural Language API, which detects entities in

the sentence and uses them for the recommendation process. Related

documents are retrieved via Google Custom Search with detected entities

as a query.
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Figure 6.5. Example screen capture of the system in a session where the participants were
having a natural conversation about movies. The corresponding transcripts of
the spoken conversations are shown below the screen captures. The system
is recognizing and recommending entities and matching documents based on
the conversational input.

An example of a sentence, extracted entities, their types, and the resulting

queries:

Sentence: Bordeaux is famous for its wines.

Entities: Bordeaux (type location), wines (type consumer good)

Named entity query vector: Bordeaux

General query vector: Bordeaux + wines

The system runs in a regular browser window (Figure 6.4). It consists of

a timeline that displays a stream of recognized entities in the lower part

of the window, a timescale with timecodes displayed in the center, and

successive sets of four retrieved documents and four recommended topics

in the upper part of the window. A new set extends the timeline every time

a new transcription is available.

The user can interact with the system in multiple ways. Clicking on

recognized or recommended entities triggers a search and opens the most

relevant article in a new tab. Clicking on a document will open its content
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Figure 6.6. Experimental setup. Participants were sitting around a table, and a laptop
was placed in front of each participant. The laptops were displaying the
SearchBot interface. Microphones were placed on the table to record the
conversation.

in a new tab. Users can also move back and forth in the timeline by clicking

on and dragging the central portion of the window.

An example of a system screen captures during a spoken conversation

in which participants were having a natural conversation about movies is

shown in Figure 6.5.

6.2.2 Overview of the Study

We aimed to investigate how a proactive search agent can support natural

spoken conversations between people by augmenting the conversations

with additional information. To that end, we conducted a user experiment

with 12 pairs of participants in a within-subjects design. Each pair of

participants took part in twice twenty minutes of informal conversation,

once with access to SearchBot and the second time without SearchBot but

with access to a custom version of Google Search to avoid any confound-

ing variable regarding variation in the quality of retrieved information.

Conversations were kick-started through a suggested topic, i.e., Movies

or Travels. Both topics were fully counterbalanced with respect to the

condition in use, and order of sessions.

In order to assess the SearchBot’s effect on the conversation, we used

objective and subjective measures.

Influence of information shown on the conversation. To understand

whether the information presented on the screen influenced the conversa-
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Figure 6.7. Number of entities that were mentioned within 60 seconds of when they were
shown on the screen.

tion, we counted the entities extracted from the items shown on the screen

that were mentioned in the 60 seconds following their first appearance on

the screen. To control for possible cases in which displayed entities were

mentioned by chance, we performed the same calculation in the control

condition. In this case, the proactive search interface was running in the

background, and results were not shown to the participants.

Consumption of web resources. The number of pages opened by partic-

ipants during the conversation served as a proxy for the consumption of

Web resources.

Perceived quality of the recommended items. We showed participants the

list of the 100 recommended entities and the list of the 100 Web documents

that the system displayed most frequently, and we asked them to mark the

items that they considered pertinent and relevant to the conversation. We

considered this measure a proxy for the perceived quality of the items the

system suggested.

Preferred items with the proactive search agent. In the experimental

condition, we logged the item types (i.e., Web documents, recommended

entities, and recognized entities) that the system displayed and that the

user clicked on to seek more information.

Subjective experience. We investigated participants’ subjective experi-

ences with the system using a questionnaire and a semi-structured inter-

view.

6.2.3 Findings

Results show that participants in the experimental condition frequently

referred to the entities and documents shown on the screen during their

conversations (Figure 6.7). The comparison with the control condition, in

particular, demonstrated that these references were not due to chance.
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This result indicates that not only did the proactive search system re-

trieve useful information, but the displayed information influenced the

conversation, as questionnaires and interviews further confirmed.

There was no significant difference in the number of Web resources con-

sulted between the experimental and control systems. This result suggests

that participants retrieved the same number of useful resources supporting

the conversation in both experimental conditions. However, while in one

case the resources were automatically retrieved by the proactive search

agent, in the other case, explicit query formulation and refinement was

needed.

In general, the reported quality of the experience of using the system was

more positive for the experimental condition, as it allowed participants

to keep eye contact with each other, enabling more fluent conversation.

Participants reported that SearchBot allowed them to check facts and build

common ground without needing to exert much mental effort. Furthermore,

the system was able to expand the conversation in new directions. However,

the added value of the proactive search experience seemed to come with

the cost of feeling less in control of the search process.

6.2.4 Design Implications

These results show that entity-based interaction can be engaged success-

fully in conversations, as a way to support an interlocutor’s immediate

understanding, or as an advanced method for automatic note-taking. Fu-

ture work could investigate, how a proactive system could present,

after a conversation has taken place, a summary of it in the form

of a network of entities. Such visualization would provide an overview

of the different topics, opinions, entities of interest, in other words, not only

a transcript but the context of the conversation displayed as interactive

entities ready to be used in queries, organized or shared.

6.3 Entity Recommendation Across Digital Environments

So far, the systems described in this chapter have presented opportunities

for harnessing entities outside of digital environments through conversa-

tion monitoring. An important remaining challenge consists of enabling

entity affordances across multiple digital environments, allowing a user to

search, read, write, communicate using a variety of digital tools while still
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taking advantage of entities.

6.3.1 Overview of the System

User Interface

The system’s user interface is illustrated in Figure 6.8. It implements

three specific features:

1. Showing entities being recommended by the system

2. Allowing selection of entities of interest by the user (explicit feedback)

3. Allowing direct action on entities when relevant

In the following, we describe how each of these features were imple-

mented in our experimental setup. Finally, we provide a use case example

demonstrating the use of the entire system.

Recommended entities are displayed within four rows of five items, one

row per entity type, i.e., people, applications, documents and topics (as

keywords).

People are identified by their name under a photo-based icon when

available, and a standard anonymous silhouette when not. Applications are

identified by their names under a standard icon or logo of the application

or service. Documents are identified by their name under an icon based

on a preview of their content, with a small icon of the application used

to read or edit it. Finally, topics are identified as a single keyword. In

each row, recommended entities are ranked horizontally from left to right.

Since the main purpose is to show a small variety of the most relevant

entities, the ranking is not visually emphasized. As users perform their

tasks, the system progressively updates the recommendations. These

changes are reflected in the UI as entities eventually shift places and

new entities replace old ones in each row. In the prototyping phase, since

entities are displayed on an orthogonal grid, some users tried to derive

meaning from the vertical alignment of entities across rows. To prevent

that, the grouping of recommended entities by type in each row has been

emphasized with a grey rectangle that acts as a container.

When the user is interested in a specific entity among the recommenda-

tions, she must be able to express her interest in a way that informs the
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Figure 6.8. Two states of the system’s user interface. Recommended entities are displayed
within four rows, here with five items each: people, applications, documents,
and topics. The user can select entities of interest by clicking on them, which
updates the recommendations. Up: the user sees entities related to her
current work. She notices figures she has made for one of her papers (a1). She
clicks on “Illustrator” (an application for editing vector graphics) (a2), then
on the topic “diagram” (a3). Down: As a result, the entities of interest are
displayed in the top area (b1) and the system updates the recommendations
accordingly with the user’s selection. In the document row, she selects an
illustration (b2) that she will modify for use in her new paper.
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system so that recommendations update accordingly. To that end, every

recommended entity displayed on the UI can be selected with a click. As a

result, the selected entity, or entity of interest, appears in the area at the

top and the overall recommendations (in every row) are updated, taking

the selection into account (i.e., a positive feedback on the selected entity

is sent to the system). More entities can then be selected and added to

the entities of interest at the top of the screen, providing an explicit way

to influence the recommendations. Entities of interest can be removed

from the selection by clicking the cross that appears at their upper right

corner when the mouse cursor hovers their icon. Removal of an entity of

interest from the selection sends a neutral feedback on the selected entity

to the system, which updates the recommendations accordingly. The whole

selection of entities of interests can be reset by clicking the “Clear selection”

button on the right.

An important feature of the system is to make the recommendations

actionable. While work on translating recommended persons and key-

words into potential actions is ongoing, the present version simply allows

to directly open recommended applications and documents. Figure 6.9

illustrates the user interface through an example scenario.

Example Scenario

Alice is evaluating a Master’s Thesis about interactions in virtual reality.

The work is quite interesting and she’s almost done with the first pass

of annotations. A notification pops up in the corner of her display: it

is an email from the university administration stating the budget she

has submitted for a conference trip next month has been approved. This

makes her think she better hurry if she wants to be able to choose which

flights and hotel will better suit her needs. Prioritizing the new task, she

interrupts the evaluation and opens the travel portal. After a few seconds,

the entity recommendation display gets updated with entities of the budget

document she sent last week, the concerned administration person, as well

her colleague and co-author Bob, who is supposed to give a talk at the

conference as well. By glancing at the screen Alice sees the name of Bob

and she realizes he could provide useful advice for what concerns which

hotel to stay as he had already planned his trip. She opens a new direct

messaging conversation. “Hi there. Do you already know in which hotel

you’ll be staying in Hong Kong?”. Bob answers and shares some points

of interest he plans to visit. With that information, Alice finishes her
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Figure 6.9. Use case scenario.
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booking. Now intrigued, she resumes her exploration of what to do in

the city when she’s there. The entity recommendation screen now shows

related trip advisor links, but the system also recommends her friend

Charlie. That recommendation makes her recall Charlie had once sent

an email describing his own trip to Hong Kong. Looking for that email,

she selects Charlie and the email client, which tells the system to focus

on items related to these entities in the following recommendations. With

the provided feedback the system manages to dig up Charlie’s old emails,

which included some personal recommendations that have become useful

at last. Alice starts to be pretty excited about the trip but realizes she has

an urgent matter to attend. She clears the selected entities and resumes

her thesis evaluation task. After a few seconds, the system shows again

an entity-based overview of her current tasks, including the submitted

Master’s Thesis manuscript and her annotated document.

6.3.2 Overview of the Study

A user experiment was conducted to assess the quality of recommendations

and understand how it influences users’ behavior and subjective experience

of the task at hand. The study followed a within-subjects design, with

two conditions, one with the recommender system visible, and a control

condition with the same system running in the background without being

visible to the participant. Thirteen participants took part in a two-phase

experiment: two-week digital activity monitoring, in which participants

had to keep a diary of all their digital activities, while the system’s logging

software was running in the background on their personal laptop, followed

by a controlled lab study (see setup on Figure 6.10) in which participants

had to perform two tasks picked from their diary, e.g., course preparation,

literature review, programming or travel planning, using each system

condition for ten minutes. The order of both conditions mas fully coun-

terbalanced amongst participants. For the lab experiment, participants’

laptops were hooked to a supplemental display, which showed the entity

recommendations in one of the conditions, and to a calibrated eye tracker

that would record gaze data. After the task, participants were interviewed

to register their subjective experience of relevance and influence of the sys-

tem, then had to assess the relevance of entities that were recommended

to them during the session. The influence was measured through dura-

tion of gaze fixation on recommended entities, explicit interaction with

recommended entities and direct utilization of recommended information.
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Figure 6.10. The interactive setup. Participants used their own laptops to perform the
tasks. An external monitor was set up to connect to the laptops showing
the recommender system’s UI. SMI eye tracking device was installed and
mounted onto the external monitor to track participants’ eye gaze behavior
during the tasks. In the figure, a participant continues a writing task
for a research paper while the recommender system continuously suggests
relevant references to the manuscript.

6.3.3 Findings

Our results showed that the proactive recommender system effectively

supported users in performing their tasks. The system was able to accu-

rately extract context across applications. The proposed entity interactions,

with the added context leverage, often helped participants retrieve useful

items for which they could not recall a specific pointer, e.g., title, source or

location. The simple possibility to select an entity of interest to orient the

recommendations proved effective, with data showing that such affordance

was consistently used during the session, and our qualitative findings

suggest such affordance was an important factor in the overall positive

experience using the system.

6.3.4 Design Implications

Beyond immediate use, as the entity recommendation was used here, this

prototype and study show how a person’s activity can be followed in the

background by a proactive agent, which would transcribe these activities

into an entity-oriented log, allowing the user to fluidly transition

into an entity-oriented environment, utilizing her recent insights
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as material to enrich ongoing or past explorations.

6.4 Contribution

This chapter aimed at answering RQ3: How to benefit from entity-based in-

teractions for exploration beyond self-contained systems?. InspirationWall

demonstrated the possibility to influence the outcome of collaborative

ideation sessions using speech recognition to leverage context, imple-

mented into a non-intrusive setup. SearchBot also used speech recognition

in a conversational setting with the added possibility to interact with rec-

ommended entities to access more contextual information and help find

common ground with the interlocutor. Finally, we demonstrated the utility

of a system proactively recommending entities in relation to a user’s task

at hand.

It must be noted that proposing systems that infer information of interest

based on implicit inputs would not do much in terms of improving user

control over encountered information. Transparency-wise, recommender

systems represent a less than ideal form of support for information seeking.

Our use of proactive agents in the tested systems allow us to evaluate

the effects of the possibility to incorporate traces of relevant information

extracted from temporal activities, e.g. conversation or everyday tasks,

into the greater exploration activity, in the form of actionable entities

that can be actively shared, organized and used into queries. The dan-

gers of automated recommendation could ideally be avoided through the

comprehensive extraction of entities in such settings, which would yield a

large amount of information to be visualized and explored using the same

techniques described in chapters 4 and 5.

Instead, the main contribution of such systems lies in the possibility

to incorporate traces of relevant information extracted from temporal

activities, e.g. conversation or everyday tasks, into the greater exploration

activity, in the form of actionable entities that can be actively shared,

organized and used into queries. As such, the three described systems and

respective studies have demonstrated that entity affordances proposed

in chapters 4 and 5 do not constrain a user’s exploration within a single

dedicated digital application and can be used as a way to augment various

aspects of it and to centralize respective outcomes, thus addressing RQ3.
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7. Discussion

In this chapter, we reflect on our exploration of entity-based interaction

techniques designed to support information exploration. First, I summa-

rize the main findings of the presented research. Then, I propose a design

template describing the Hypercue [Klouche et al., 2018], an interactive

representation of entities that provides personalized access points to infor-

mation and serves as a complement to hyperlinks. The Hypercue design

template consists of a minimal set of affordances that ensure all important

features for supporting exploratory search can be addressed while leaving

enough design space to facilitate its integration in a variety of systems.

Finally, we discuss the implications of our work and propose future work

directions.

7.1 Summary of the Main Findings

The work presented in this dissertation aimed to investigate the design

space of entity-based explorability of the information space, following three

properties: Direction, Orientation, and Continuity.

Chapter 4, which summarized the work reported in publications I and

II, aimed to address Direction by answering RQ1: How can entity-based

querying benefit information exploration? Both systems described, Explo-

rationWall and IntentStreams, successfully demonstrated techniques for

directing exploratory search through entity affordances. Study results

showed, in the case of ExplorationWall, that the proposed solution, dubbed

Entity Picking, had positive effects on search activity, behavior, and engage-

ment in exploratory search tasks, and even outperformed conventional

text-based querying in search performance. IntentStreams introduced
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support from an intelligent agent in the form of interactive user intent

modeling that coupled relevance feedback with visualization of the user

model to keep the user in control. The significantly positive results ob-

tained regarding both performance and engagement confirmed that the

proposed interaction techniques were effective for directing exploration,

therefore addressing RQ1.

The work summarized in Chapter 5, reported in publications III and IV,

aimed to address Orientation by answering RQ2: How to demarcate and

visualize a coherent information space through entity-based affordances?

First, RelevanceMap showed an example of a user-driven visualization

of an information space that helps users more accurately demarcate and

perceive an information space using situated entities on a 2D map. Sec-

ond, QueryTogether showed how users took advantage of entity-based

affordances in co-located collaborative exploratory tasks using multiple

devices, to coordinate their team and find common ground. These two

complementary cases showed how entities can be used interactively to

demarcate a coherent information space of interest, thus answering RQ2.

Chapter 6, which summarized the work reported in publications V, VI

and VII, aimed to address Continuity by answering RQ3: How to benefit

from entity-based interactions for exploration beyond self-contained sys-

tems? InspirationWall and SearchBot showed two examples of background

conversation monitoring for proactive entity recommendation. SearchBot

in particular demonstrated the feasibility of real-time relevant recommen-

dations from such conversation monitoring. The last presented system

used another type of monitoring, i.e., digital activity analysis, to infer the

task in which the user was engaged and provide relevant entity recom-

mendation and possible related actions. Beyond the setting of these cases,

the successful monitoring of a user’s activity outside the boundaries of

one dedicated digital application demonstrated the potential for entities

to be harnessed in various contexts pertaining to the complex process of

information exploration, thus providing a satisfying answer to RQ3.
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7.2 From Hyperlinks to Hypercues: Integrating Entity Affordances

Following the research findings, I reflect in this section on my exploration

of interaction techniques designed to support entity-oriented information

exploration. This reflection is summarized from Publication VIII. That

last work aimed at devising a minimal set of affordances that ensure all

important features for supporting exploratory search are addressed while

facilitating their integration in various existing applications. A driver for

such reflection, and a followup to my three research questions, was the

following new question: What would be an equivalent to the Hyperlink in

the proposed paradigm of entity-oriented exploration?

My answer is dubbed the Hypercue, an interactive representation of

entities that provides personalized access points to information and serves

as a complement to hyperlinks. Hypercues create opportunities to flexibly

discover, store, and share information, and to gain insights from the data.

We describe the rationale behind the design template for Hypercues and

discuss its implications.

A cue is a stimulus and a signal for action. A hypercue is an interactive

representation of an entity; it offers affordances for the user to explore,

share and organize her thoughts. Systematic inspection and exploration of

the design space of each feature of exploratory search systems allowed us to

identify three complementary affordances that are responsible for enabling

these features and that together constitute a minimal design template for

implementing hypercues. The following template aims to guide the creation

of future interfaces for exploration without overconstraining the design

of such systems, or hindering the ability to address specific cases through

the choice of a specific form of visualization. The proposed affordances

can also be implemented in most existing media-handling applications

(e.g., in browsers, PDF and e-book readers). From the user’s perspective,

the following template provides a base set of rules and expectations to

facilitate users’ engagement in complex information behavior.

Affordance 1: Entity-Based Querying

Each entity or combination of entities yields various new related

entities, thus providing an overview of the respective information

space.

Providing the ability to create queries through the direct manipulation of

recommended entities can support query formulation and facilitate

query refinement. The ability to add more entities to an initial query
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makes it possible to refine it by narrowing down or expanding the result set.

Adding external entities (e.g., from somewhere else in the article or page

being consulted, or from another source) results in the expansion of a query,

thereby supporting learning and understanding. Adding an entity

to the query from the result set enables facets and metadata-based

result filtering.

Entities become resources for users to express their information interests

and search intents. Sets of related or previously observed entities can

be used to collect feedback from users on their current reliance, which

would support advanced personalization in iterative user modeling where

the exploration system presents predictions of user intent through sets of

entities helping the user to discover and formulate her current intent.

Modern browsers and operating systems already implement affordances

to inspect the definition of an expression, its corresponding Wikipedia

entry or related search engine results. Such affordance is here generalized,

using entity search to yield a crop of related entities from any selected

object (e.g., an expression, article, or link).

Affordance 2: Entity Mapping

Entities can be moved around, and users are provided with the

spatial freedom to organize the entities of interest in a layout that

reflects their understanding and their mental representation of

the information space.

Spatial organization of thoughts is a common behavior. We draw mind

maps, we make piles of documents, we organize sticky notes, and store

documents within directories or under consistent tags. Sense-making is

an important part of exploratory search [White and Roth, 2009], and as

such it relies on users building a mental representation of the state of the

world (i.e., the information space at hand) and then iteratively contrast-

ing this representation against the real world (i.e., new information) to

update it and acquire a progressively more accurate understanding of the

information space [Russell et al., 1993].

Entity mapping provides support for mind mapping, which supports

learning and understanding. It provides an implicit input channel

for leveraging the search context. It also allows for creating visu-

alizations that support insight and decision-making by enabling

multi-aspect search, as well as for addressing the need for histories,

workspaces, and progress updates.
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Affordance 3: Entity Storing and Sharing

Entities and groups of entities can be easily saved for later use

and shared with collaborators.

In today’s paradigm, documents often serve as units of information.

Users search for, bookmark, and share such documents. Such actions

are not sufficient, however. The user often forgets the intent behind the

bookmarking and thus loses the utility of the stored document. Some addi-

tional action is required, such as giving each bookmark a context-relevant

title or organizing bookmarks within theme-specific directories. Sharing

requires the use of messaging channels, as text messages are necessary

to convey context and intent. Entity-oriented information enables the use

of variable and personalized units of information. Users can search for,

store, and share references to persons, media, excerpts, and organizations.

Taking advantage of affordances 1 and 2, the exchange of information

involves potentially sharing – and collaborating on – whole contexts in the

form of organized entities, which facilitates collaboration. The same

principle gives access to these contexts across devices, providing flexible

support for task management and enabling histories, workspaces,

and progress updates. Stored or saved information also provides an

implicit input channel for leveraging the search context.

The present template consists of fundamental principles aimed at guiding

the design of future systems and supporting information exploration while

also limiting the number of constraints imposed on the overall design space.

In this section, we discuss aspects that are not addressed by the template

and attempt to outline the remaining design space.

Hypercues are designed to be identified and defined by users (although

they could also be recommended within contents). For instance, in the

latest iteration of its operating system for tablets (iOS 11), Apple has

introduced a generalized ability to drag and drop. Pictures, text snippets,

news articles, hyperlinks, and other bit of information pop out of the

environment with a gesture of the finger, thus becoming interactive objects

that can be dragged across applications and dropped into messages, notes,

or cloud-based storage. This ability lets the user interact with predefined

objects and with user-defined selections, and it offers an ideal interactive

base for the integration of the affordances proposed in this paper.

Although the template does not provide information about the shape
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and size of displayed hypercues, it is useful to discuss the requirements

and provide some recommendations based on our experience. The first

requirements of the hypercue marker is for the represented entity to be

identifiable and placed in a space that allows it to be moved and positioned

in relation to other entities. A constant challenge when designing entity-

based interfaces balancing the amount of information conveyed through

the entity marker against the number of entities that can be comfortably

displayed. In any case, it is necessary to provide the option to quickly

inspect the entity, so that the user can access a comprehensive overview of

the entity through linked content and related material. However, it is also

essential to show enough information up-front to trigger the user’s recog-

nition and incite her interest. Modern desktop-based operating systems

offer a good model for representing files and directories as manipulable

objects using an icon and one or two short lines of text. The most useful

information depends on the task and on the information space. Although

movies are usually displayed with a poster, a title and a release year, find-

ing the most relevant movie in a set could depend on other information,

such as the cast or the rating. Likewise, finding useful academic articles

can require variable criteria (e.g., authors, venue or citations). The solution

might lie in a balance between user-defined preferences and automated,

context-sensitive, and adaptive interface settings.

These guidelines are generalizable to every information space. Their

reliance on direct manipulation and spatial layouts makes the hypercue a

potentially interesting candidate for integration with the physical world

through playful tangible interactions. Registering an entity or a set of en-

tities as physical objects allows users to combine and share such objects to

playfully discover information through machine vision or sensing surfaces.

7.3 Implications of the Research

An important implication derives from the fact that all interactions ex-

plored in this work require substantially more effort from the user than

current methods require, as users have grown accustomed to content feeds

and to the simplicity and immediacy of today’s search engines. I advocate

for information practices in which users are more active, and posit that

this is the cost of providing greater transparency and control over informa-

tion. However, this cost can be mitigated through fluidity by having every

interaction serve an informational goal and letting the user become truly
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absorbed by the task, thus rewarding her with persistent and constructive

search sessions that remain useful in the long run.

We can imagine that, in the future, a user’s search interface of choice will

be independent from the data being explored. As a result, a user could ap-

ply her tool of choice to discover information of interest indifferently within

academic articles, music, movies, and social media posts, thus increasing

the potential for serendipity and creative solutions. A standardized base

set of affordances such as the Hypercue provides not only a useful design

template for the future design of such tools, as well as establishing a con-

sistent and effective paradigm in the way we will, as users, interact with

information.

Beyond the purely interactive layer of potential information seeking

techniques discussed in this thesis, it is important to remember that the

present research presumes the existence of organized entities, and the

road to such reality most likely involves machine learning and artificial

intelligence constructing such entities from the current amorphous text-

based information that populates our searchable information space. As I

conveniently delegate, in my introductory chapter, all responsibility related

to the organization of information to the semantic web and information

retrieval communities, I must acknowledge that such task is not only

difficult but harbors the very same potential lack of transparency that the

present research addresses in current search systems.

7.4 Limitations and Future Directions

The lack of readily available entity-oriented information has made this

research a challenging venture. As a consequence, our various prototypes

and experiments relied on limited closed – although very large – sets of

home-indexed entity-oriented data. For that reason, our studies were

limited to the laboratory, under controlled conditions. Moreover, our focus

on fundamental aspects of entity interaction encouraged systematic com-

parison with baseline conditions replicating conventional methods. This

approach yielded a strong and focused understanding of the benefits of our

designs over the de facto paradigm, and I believe was the right strategy

at this point in the research on this topic. But an important trade-off

results from the fact that for most experimental tasks, participants were

driven by extrinsic motivations, i.e., topics of interests that were provided

to them, instead of intrinsic motivation in the form of free exploration
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following their own inspiration. Another limitation of our comparative

studies lies in the minute differences between our baseline systems and the

actual system they imitate. While great care has been taken in creating

these systems, their models, e.g. Google Search, incorporate beneficial

features, e.g. predictive typing based on a large number of queries, that

could not be replicated at the time. In all cases, the experimental system

was treated comparably, as it also was missing such features. A natural

future research direction would consist of utilizing affordances proposed

in this research to implement systems that are ready for larger studies in

the field. Such a setting, coupled with qualitative research methods, would

yield a richer understanding of potential futures of how we, as users, will

interact with information, and how future paradigms could change and

benefit our societies.
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ABSTRACT
Exploratory search confront users with challenges in express-
ing search intents as the current search interfaces require in-
vestigating result listings to identify search directions, iter-
ative typing, and reformulating queries. We present the de-
sign of Exploration Wall, a touch-based search user inter-
face that allows incremental exploration and sense-making of
large information spaces by combining entity search, flexible
use of result entities as query parameters, and spatial con-
figuration of search streams that are visualized for interac-
tion. Entities can be flexibly reused to modify and create new
search streams, and manipulated to inspect their relationships
with other entities. Data comprising of task-based experi-
ments comparing Exploration Wall with conventional search
user interface indicate that Exploration Wall achieves signifi-
cantly improved recall for exploratory search tasks while pre-
serving precision. Subjective feedback supports our design
choices and indicates improved user satisfaction and engage-
ment. Our findings can help to design user interfaces that can
effectively support exploratory search on touch devices.
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INTRODUCTION
Surface computing technologies hold great potential for en-
hancing information retrieval activities. Devices with touch
interaction capabilities make possible to design engaging di-
rect manipulation interactions, facilitate awareness of infor-
mation available for the user beyond conventional search en-
gine result pages, and afford visualization and spatial organi-
zation of content. However, conventional search user inter-
faces rely exclusively on typed-query interaction and result
presentation as ranked list of documents [24], and thus they
present challenges when transferred to touch devices.

These design conventions are pernicious for many search sce-
narios, in particular, exploratory search scenarios, that de-
scribe a class of search activities that go beyond basic lookup,
typically involving the user in a field with which she is not fa-
miliar [38]. Exploratory search patterns are very diverse, but
share together common complex user-centered challenges:
The need to overcome difficulties in formulating queries in
unknown information spaces, ways to learn about the infor-
mation space and identify possible search directions beyond
the entry point specified by an initial query [28].

Causes of inadequacy of classical search interfaces for touch-
enabled devices are the poor substitutes for keyboard and
mouse inputs. Virtual keyboards are reported to be less per-
forming then their physical counterpart [34], and do not pro-
vide usual text editing shortcuts (e.g., copy, cut, paste, can-
cel). As for mouse-based interactions, touch-based substi-
tutes constrain natural touch interactions and prove difficult
for quick and accurate text selection [10]. Also, the lack of
window management on touch devices does only allow the
visualization of a single query at a time, which hinders com-
parison and revisiting previously retrieved information.

As a consequence, the fluidity and search performance ex-
pected while searching with surfaces is hampered [38].
Therefore, it becomes crucial to design new solutions that
overcome the limitations of conventional search user inter-
faces and bring in forefront the potential of multi-touch inter-
action.



We present the design of Exploration Wall, a novel search
user interface for facilitating exploratory search tasks on
touch devices. Exploration Wall is based on the following
design principles targeting above-mentioned challenges:

1. Flexible reuse and combination of items to facilitate query
formulation.

2. Result sets of not only documents but most relevant entities
to foster iterative query reformulation.

3. Use of spatial configuration of multiple search streams to
identify search directions and learn about the information
space.

Our design was found to facilitate exploratory search be-
havior when compared to the conventional baseline search
user interface, as indicated by measured system effectiveness.
Moreover, users were found to be more engaged with the task
and subjectively more satisfied by their exploratory search.
Our findings suggest that our principles can be effective when
designing search user interfaces for touch devices, and can
overcome many limitations of the direct adaptation of con-
ventional search user interfaces to surfaces.

BACKGROUND

Exploratory Search
Most available tools for information retrieval focus on look-
up retrieval, such as looking up the address of a restaurant or
reminding a historical fact, while many users search to solve
more complex tasks that require exploration of the informa-
tion space. White [38] describes exploratory search as activ-
ities that move beyond basic lookup retrieval. Such activities
rely on learning and investigation [22]. Exploratory search
activities have no predetermined goals and are described as
open-ended [38]. Therefore, the absence of clear user intents
leads to difficulties in formulating queries.

Exploratory search processes are considered dynamic. As
the information space is unknown or unfamiliar to the user,
the query formulation evolves iteratively as the user becomes
more familiar with the context [7]. In addition, exploratory
search tasks include cognitive and behavioral attributes [40].
Cognitive attributes can be defined as those that have the rea-
soning associated with conducting an exploratory search and
involve learning and investigation as goals; general and ill-
structured problems; uncertainty; dynamic, multi-faceted and
complex search tasks and are accompanied with sensemak-
ing, decision making or other cognition.

As stated, in the context of exploratory search users need par-
ticular support in formulating queries, learning about the in-
formation space and identifying possible search directions.
Next we review how visual interfaces have been developed to
address these issues.

Visual Interfaces in Search
Recently, a variety of search systems have been developed in
order to enable faster relevance judgment and effective feed-
back [12, 17, 19, 23, 32]. Several visualization approaches
have been explored including multiple linked lists, scatter

plots, graphs and their combinations [31, 19]. These types of
visual search systems are distinguished from familiar query
composition ones (e.g., Project Blacklight [30]) because of
their emphasis on rapid filtering to reduce result sets, pro-
gressive refinement of search parameters, continuous refor-
mulation of goals, and visual scanning to identify results [1].

Currently, visual approaches attempt to better support explo-
ration in different ways: supporting sense making by incre-
mentally and interactively exploring the network of data [8],
showing how visualization support user involvement in the
recommendation providing rationale behind suggested items
[35], visualizing relations of different queries and result sets
[2]. Recent work shows how to support users to view and ma-
nipulate their search intent models as viewed by the system
[2, 3, 29, 11] . This work attempts to combine personaliza-
tion of search with visualization approaches offering support
to formulate queries and learning about the information space
helping users in directing their search [29] . While these sys-
tems demonstrate the importance of investigating visual user
interfaces in exploratory search, they have not been consid-
ered for multi-touch devices.

Recent visual interfaces in search have shown the effective-
ness of interacting visually with query elements and results
combined with computational techniques that support explo-
ration. Multi-touch devices could provide an opportunity for
visual interactive search for their capability to encourage ma-
nipulation of visual elements and for the limits posed by the
absence of mouse and keyboard. In the next section we in-
spect previous work on search interfaces on touch-enabled
devices.

Search with Touch Devices
The workshop on exploratory search and Human-Computer
Interaction at the 2007 CHI conference [37] demonstrates the
interest in the research community on extending search in-
terfaces to new kind of interactive environments. One of the
discussed topics, in fact, was about the need to better under-
stand how to design exploratory search systems for beyond-
the-desktop interaction. There is a raising need for search
system designs on interactive displays that take advantage of
the idiosyncrasies of multi-touch interactions [39] instead of
simply being directly ported from desktop-based interfaces.

One of the critical issues is to reduce the need for text en-
try, which is not suitable for touch-based interaction [42]. In
the case of a small form-factor, FaThumb [18] explores web
browsing on mobile phones by providing an interface that ex-
ploits facet navigation and limits text entry only to further nar-
row search results. Findings from the user evaluation demon-
strated that text entry is more efficient for direct search while
for open-ended search facet navigation offers better perfor-
mances. Multi-touch gesture-based interaction has also been
exploited as a mean to improve targeted search of specific
content. For instance, Gesture Search [20] is a tool that allows
users to define personalized touch gestures to quickly access
data items on their mobile phone. The Questions not Answers
(QnA) [16] prototype is an interesting instance of a system
that exploits social interactions and context-awareness capa-
bilities of mobile devices in order to offer reuse of previous



queries based on geographical locations. The system maps
other users’ queries to their physical location and provides an
interface to display them on an interactive map. Results from
the user study demonstrated that displaying previous query
result in less need to formulate new query or to a better for-
mulation, which is influenced by the displayed queries.

Concerning large surfaces, like in public display settings,
surface computing has been examined particularly for open-
ended information exploration [14, 9]. Especially interest-
ing cases are the EMDialog [13], which provides a visual
exploration environment for an artist’s work in a museum
via temporal and contextual dimensions, and the Bohemian
Bookshelf [33], which is designed to systematically sup-
port serendipitous discoveries while searching in a book col-
lection through different interlinked visualisations. Insights
from these research works led to several design principles
for search interfaces in public spaces, such as combining dif-
ferent search strategies, rewarding short-term and long-term
exploration and making information exploration appealing
through engaging multi-touch interaction and information vi-
sualizations. Research literature emphasized on the use of
large interactive surfaces for collaborative search tasks. Mor-
ris et al. [24] have conducted extensive empirical research on
collaborative information seeking using horizontal surfaces,
providing discussions on opportunities, challenges and design
principles for the development of co-located search systems
on tabletops along different dimensions such as collaboration
styles, search input, group size and application domains. Ef-
ficient text entry by enabling the reuse of existing text instead
of typing all searches on a virtual keyboard is also a leading
design goal in the case of large surfaces [25].

From the state of the art, it is manifest that current solu-
tions are modelling search systems for small or large surface
and there is a lack of investigation on touch interfaces for
medium-sized display screens, such as tablets. They present
different affordances if compared to smaller or larger form-
factor, and therefore need a different design approach. For
instance, they do not support collaborative tasks as large sur-
faces do —given the limited screen size— but the display di-
mension is still bigger than mobile phones —while support-
ing users mobility— thus allowing richer visualisations, ar-
rangements of interface elements and touch-based manipula-
tions (e.g., two-handed gestures).

DESIGN CHALLENGES
From the state of the art, we identified three main challenges:

1. Formulating queries in unknown information spaces
Activities considered as related to exploratory search are very
diverse and hard to define in a consolidated way. But unlike
basic lookup search, they usually take place in areas that are
unfamiliar to the user and are characterized by the frequent
need to reformulate the query.

2. Learning about the information space and identifying
possible search directions
The spatial metaphor of exploration applied to information
retrieval well describes the need for steering the exploratory
evolution in the information space. Narrowing possibilities

to make steering decisions implies continuous gain of topical
information.

3. Going through long lists of results with low information
gain
In current search systems, users are forced to invest signifi-
cant cognitive efforts in acquiring cues to formulate queries
from the intermediate results, instead of focusing on collect-
ing and learning from relevant information. Long lists of re-
sults conflict with the idea of a dynamic steering by slowing
down the iterative process of query reformulation.

4. Typing and manipulating queries
Exploratory search activities performed on a traditional
typed-query search interface require a lot of text entry and
text manipulation. On touch devices, text manipulation is
made difficult by the absence of a physical keyboard, hotkeys
or shortcuts, and the lack of an accurate selection tool.

GENERAL DESIGN PRINCIPLES
From the above mentioned challenges, we came up with tar-
geted design principles to guide the implementation of our
prototype:

A. Flexible reuse and combination of information items to
facilitate query formulation
To reduce the need for text entry (challenge 4), we chose
to itemize information into entities of different types that
can be flexibly manipulated and "dragged around" to support
and facilitate all fundamental tasks like selection, duplica-
tion, grouping, deletion. Entities would be used to formulate
queries, either individually or combined, to get a set of new
entities as search results. An existing query could then be
easily refined or reformulated by addition or removal of such
entities and the results would update accordingly.

The possibility to input text is still necessary in some situa-
tions, for example when the system fails to make the proper
suggestions or when specifying a first query. We decided our
design should thus support it as an alternative and as a way to
instantiate a search session.

B. Result sets of not only documents but most relevant en-
tities to foster iterative query reformulation
To foster iterative query reformulation (challenge 3), we in-
troduce the notion of search streams which describes an in-
teractive structure supporting a query and related results: the
query itself is formed of one or more entities and is composed
by the user, while the results are shown as a vertical arrange-
ment of entities related to the query and positioned above it.
In the query area, items can be moved freely. Under a certain
horizontal distance threshold, those entities are considered as
a single query. The unity of a query is visualized through
a network of thin lines linking the entities together. At first
the query visually leads to a button that triggers the retrieval.
The search engine then returns a set of entities related to the
query. Those represents not only retrieved documents but also
new entities, such as keywords or persons. They are vertically
ordered by type and relevance. The flexibility of the search
stream comes from its two level structure. It acts partly as a
consolidated unit which can be moved around and considered
as an almost traditional list of results, but each document or



Figure 1. The Exploration Wall interface is composed of the (a) query area, (b) the results area, (c1, c2) search streams, three types of entities: (d1)
documents (brown icon), (d2) authors (red icon), and (d3) keywords (blue icon), and (e) the reading-list drawer. The user can move any information
item to compose queries by spatially grouping them on the query area. The whole workspace is scrollable and unlimited. Multi-touch gestures allows
user to easily add or remove space between streams, or combine streams.

entity can become a new query, or part of an existing query,
in the same stream or a parallel one.

C. Use of spatial configuration of multiple streams to iden-
tify search directions and learn about the information
space
To facilitate steering decisions (challenge 2) and help the user
formulate queries (challenge 1), our design supports search
on simultaneous parallel streams. Persistency of search and
context improves exploration by fostering trials without fear
of losing current work, and supporting information compar-
ison and entity association leading to quick instantiation of
new queries or quick query re-formulation. It also allows the
user to keep track of former queries and results while support-
ing unconstrained branching and revisits in the actual search
process.

EXPLORATION WALL
Here we describe the interactions and implementation of the
system based on the above mentioned design principles.

The User Interface
The interface of Exploration Wall is entirely dedicated to its
main workspace (Figure 1), which is divided in two areas:
the query area at the bottom (Figure 1-a) and the result area
on top (Figure 1-b). The workspace supports information in
the form of parallel search streams (Figure 1-c1 and c2) orga-
nized by taking advantage of the multi-touch ability: it can be
scrolled on the horizontal axis with a simple swipe gesture on
the background, horizontal space can be added or removed

at will from a specific location using a conventional pinch
gesture, the same pinch gesture can also be used to dilate or
contract space (e.g., to quickly improve legibility of an area
cramped with information).

In current instantiation, entities are of three types (Figure 1):
Documents (Figure 1-d1), Authors (Figure 1-d2) and Key-
words (Figure 1-d3). Each entity is represented by a pic-
togram, a label and a relevance gauge. One can move an
entity by dragging its pictogram. Additional interactions in-
clude: tap on the title of a document to reveal additional in-
formation like source and content, tap on the icon to store the
entity. Stored entities appear highlighted and can be found in
the storage drawer described below.

The storage drawer (Figure 1-e) offers an unobtrusive solu-
tion that acts as a reading list as well as an always accessible
storage area for information transit. One opens and closes
it by performing a swipe gesture from the right edge of the
display.

The Search Engine
The search engine was designed to support multi-touch in-
teraction design of Exploration Wall and is based on two de-
sign rationale. First, the entity ranking where entities that
are returned for the user to manipulate and use to formulate
queries should be as central to the topic as possible. For ex-
ample, if the user searches for "information retrieval", she is
not expecting back only entities that occur in the top ranked



Figure 2. An exemplary search scenario illustrating the functionality of the Exploration Wall system. (a) After initiating a query the user receives a set
of results, the user notices a keyword-entity that tackles her interest and drags it to the query area. (b) The user investigates the selected keyword in
relation to an author entity that has been formerly saved in to the reading list by dragging the author entity to the query area as well, close enough so
they become visually associated. (c) The user taps on the trigger to retrieve a new set of documents and entities (authors and keywords), that can be
further manipulated and used to combine with an existing search stream or to create a new search stream.

documents, but that are central for the field of information re-
trieval. Second, the document ranking where the documents
that are returned for the user as results after making some
query, say "information retrieval" and "relevance feedback"
should be not the most central entities, but the most relevant
documents matching the query.

Entity Ranking
We represent the data as an undirected graph, where each doc-
ument, keyword, and author are represented as vertices and
the edges represent their occurrence in the document data.

The centrality ranking is based on the user’s relevance feed-
back on vertices determined by dragging them into the query
area. Each cluster in a query area represents a separate query
that consists of a set of vertices. We use the personalized
PageRank method [15] to compute the ranking of the ver-
tices. The set of nodes that the user has chosen to be part
of an individual query form the personalization vector that is
set to be the prior for the PageRank computation [15]. We
compute the steady distribution by using the power iteration
method with 50 iterations. The top k=10 nodes from each en-
tity category (keyword, author) are selected for presentation
for the user.

Document Ranking
The document ranking is based on language modelling ap-
proach of information retrieval [41], where a unigram lan-
guage model is built for each document and the maximum
likelihood of the document generating the query is used to
compute the ranking. We use Jelinek-Mercer smoothing to
avoid zero probabilities in the estimation.

Intuitively, separating the entity ranking and document rank-
ing approaches makes it possible to compute a limited set of
entities that are likely to be the most important in the graph
given the user interactions and allows users to target their
feedback on a subset of the most central nodes given the in-
teraction history of the user in any subsequent iteration. At
the same time, the document ranking enables accurate and
well-established methodology for ensuring relevance of the
documents.

EVALUATION
The main purpose of the evaluation was to observe the ef-
fects and implications of the design of Exploration Wall on
search performance and search behavior. Therefore, Explo-
ration Wall was compared to a conventional search interface
which was used as a baseline. The experiment concerned the
following factors: effectiveness, expert rating, search behav-
ior, usability and user engagement. The evaluation was com-
posed of two tasks, a short one (5 minutes) and a long one (20
minutes).

Dataset
We used a document set including over 50 million scientific
documents from the following data sources: the Web of Sci-
ence prepared by Thomson Reuters, Inc., the Digital Library
of the Association of Computing Machinery (ACM), the Dig-
ital Library of Institute of Electrical and Electronics Engi-
neers (IEEE), and the Digital Library of Springer. The in-
formation about each document consists of: title, abstract,
author names, and publication venue. Both the baseline and
Exploration Wall used the same document set.

We decided to limit the data to scientific literature for two rea-
sons. First, the data should allow retrieval tasks that result in
exploration, and scientific search tasks are suitable for scenar-
ios where users’ goals are uncertain and require exploratory
search behavior. Second, experts were available for providing
high quality relevance assessments for task outcomes.

Baseline
The baseline, shown on Figure 3, was implemented follow-
ing the interface principles of traditional search tools: typed
query and resulting list of returned documents presented by
title, with authors and keywords. The system uses the same
dataset used by Exploration Wall to permit comparability.
Also, the ranking is based on the same document retrieval
model as in Exploration Wall, but to mimic traditional search
engines it ranks only documents, while authors and keywords
are only shown as additional information associated to each
document. Last, our system did not allow dynamic updates
of the search result when typing the query. All these factors



aimed to create a baseline allowing us to focus the evaluation
solely on the user interface design of Exploration Wall.

Tasks
The evaluation was composed of two tasks, a short one and a
long one. We chose 6 possible different topics for the two
tasks: crowdsourcing, smartphones energy efficiency, dia-
grams, semantic web, lie detection and digital audio effects.
In order to ensure that participants were not experts in the
topics and could perform a real exploratory search, they pre-
rated their familiarity with the topics on a 1 (less familiar)
to 5 (most familiar) scale. The four less familiar topics were
used in the tasks. Both tasks were performed with different
topics, so the participants did not the know the results from
the previous task.

Short Task
For this task, we asked the users: "Search and list 5 relevant
authors, documents and keywords that you consider relevant
in topic Y." The time limit for this task was 5 minutes.

Long Task
For this task, we asked the users: "Imagine that you are writ-
ing a scientific essay on the topic X. Search and collect as
many relevant scientific documents as possible that you find
useful for this essay. During the task, please, list what you
think are the top five key technologies, persons, documents
and research areas and write five bullet lines, which would
work as the core content of the essay." The time limit for this
task was 20 minutes.

Participants and Procedure
We recruited 10 researchers from the computer science de-
partments of two universities with a range of research ex-
perience. The 20% of them were females, which matched
the gender ratio of both departments, and the mean age was
M=30.5, SD=5.52. For the experiment participants used an
iPad Air Wi-Fi tablet, as shown on Figure 4.

Figure 3. A screenshot of the baseline system that uses the same under-
lying document set and ranking model, and allows typed-query interac-
tion.

Figure 4. Exploration Wall was evaluated using using the iPad Air Wi-Fi
tablet.

In this study, we followed a within-subjects experiment de-
sign, counter-balanced by changing the order of the two tested
interfaces, as well as the order of the two tasks. Before start-
ing the main tasks, users received detailed instructions on
how to use the interface and performed a 5 minutes train-
ing task on each interface. For text entry, we relied on the
native virtual keyboard of the tablet. At the end of the ses-
sions participants were asked to answer the UES and SUS
questionnaires for each interface via on-line forms (Google
Forms). We used the API and service of logentries.com to
log all actions and data.

MEASURES
The experiment considered the following factors: effective-
ness, expert rating, search behavior, usability and user en-
gagement which were measured as follows.

Effectiveness
The effectiveness refers to the quality of the information re-
trieved and displayed by a system. Since our baseline sys-
tem returns lists of documents while Exploration Wall returns
lists of mixed-type entities, we chose to solely measure the
quality of the displayed documents. We created ground truth
by pooling the retrieved documents from the system logs.
Domain experts were then asked to assess the relevance of
the retrieved documents on a binary scale (relevant or irrel-
evant). Effectiveness was measured by precision, recall and
F-measure at two levels [21]. First, we measured the average
retrieval effectiveness at a query level as an average quality
of the documents returned in response to a user interaction.
Second, we measured the retrieval effectiveness at task level
as an cumulative quality of documents retrieved within the
whole search session.



Figure 5. Effectiveness results for the short and long tasks split by participants. Results are reported as the mean of every query-response of each
participant during the task.

Expert Rating
Experts were asked to rate the task outcome. For the short
task, the outcome was a list of documents, and two types of
entities: authors and keywords. The relevance of each item
was evaluated on a 5-point scale (1 less relevant - 5 most rel-
evant). The outcome of the long task was an essay, a set of
documents, and a set of entities: keywords representing tech-
nologies and research areas, and persons. The sets of doc-
uments and entities were evaluated in the same way as in
the short task, while the essay was evaluated on a different
5-point scale (5=Excellent, 4=Good, 3=Satisfactory, 2=Defi-
cient, 1=Failing).

Search Trail Analysis
In order to understand and compare users’ search behavior,
we logged user actions and extracted corresponding search
trails using a method resembling White’s [36]. In a similar
manner, we then looked for descriptive statistics of the search
trails by selecting six parameters relevant to both interfaces.

• Number of queries: the total number of queries that were
submitted during each task on both interface.

• Number of text entries per query

• Number of revisits: The number of revisits to a query or
stream consulted earlier in the current trail.

• Number of branches: The number of times a subject re-
visited a query or stream on the current trail and then pro-
ceeded with formulation of a new query.

• Number of queries/min: the number of queries per minute
that were submitted during each task on both interface.

• Number of parallel queries: Number of parallel streams
produced with Exploration Wall or number of tabs opened
with the baseline.

Usability and Engagement
As usability assessment questionnaires we used the standard
System Usability Scale (SUS) [6] and the User Engagement

Scale (UES) for exploratory search [26]. SUS consists of a
ten item questionnaire and is a widely used and validated for
measuring perceptions of usability. Since the degree of user
engagement is a strong indicator of exploratory search per-
formance [38], we chose to use UES for exploratory search.
The User Engagement Scale (UES) questionnaire include 27
questions considering six different dimensions: Aesthetics
(AE), Focused Attention (FA), Felt Involvement (FI), Per-
ceived Usability (PUs), Novelty (NO) and Endurability (EN)
aspects of the experience.

RESULTS
In this section, we present results from the user experiments
divided according to the different factors: effectiveness, ex-
pert rating, search trail analysis, and usability and engage-
ment.

Effectiveness
The effectiveness results are given in Table 1. The results
show that Exploration Wall shows substantial improvement
in the long task. The improvement was found to hold for task-
level measurement, but also for averaged interaction-level
measurement for which the recall and the F-measure were
found to be significantly higher compared to the baseline.
On average at the query level, the F-measure for the Explo-
ration Wall was improved (M=0.136, SD=0.122). This im-

Long Task Short Task
BL EW p BL EW p

P (Task) 0.40 0.42 0.85 0.52 0.58 0.67
R (Task) 0.13 0.38 <0.01 0.18 0.21 0.59
F (Task) 0.17 0.34 <0.01 0.25 0.26 0.90
P (Query) 0.53 0.53 0.96 0.52 0.69 0.16
R (Query) 0.11 0.25 <0.01 0.15 0.16 0.69
F (Query) 0.17 0.31 <0.01 0.22 0.24 0.41

Table 1. Effectiveness results for the short and long tasks. Results are
reported cumulatively for the whole duration of the task and as a mean
of every query-response during the task. P=Precision, R=Recall, F=F1

measure, EW=Exploration Wall, BL=Baseline.



Long Task
Search Trail Features BL EW BL vs EW

M SD Median M SD Median Wilcoxon Test
No. of queries 4.30 3.09 4.50 12.10 6.97 13.50 Z = -2.76, p <0.01
No. of text entries/query 1.00 0.00 1.00 0.36 0.35 0.27 Z = 2.67, p <0.01
No. of branches 0.10 0.31 0.00 5.70 4.55 6.00 Z = -2.68, p <0.01
No. of revisits 0.70 1.64 0.00 7.00 6.09 6.00 Z = -2.67, p <0.01
No. of queries/min 0.26 0.17 0.26 0.63 0.36 0.70 Z = -2.70, p <0.01
No. parallel queries 1.70 1.06 1.00 8.50 5.89 7.00 Z = -2.76, p <0.01

Short Task
Search Trail Feature BL EW BL vs EW

M SD Median M SD Median Wilcoxon Test
No. of queries 2.50 1.58 2.00 3.50 2.12 4.00 Z = -1.46, p >0.05
No. of text entries/query 1.00 0.00 1.00 0.55 0.35 0.47 Z = 2.55, p <0.05
No. of branches 0.00 0.00 0.00 0.8 1.03 0.5 Z = -2.21, p <0.05
No. of revisits 0.20 0.42 0.00 1.1 1.10 1.0 Z = -1.81, p >0.05
No. of queries/min 0.59 0.33 0.45 0.86 0.36 0.93 Z = -2.24, p >0.05
No. of parallel queries 1.30 0.67 1.00 2.70 2.00 2.00 Z = -2.40, p <0.05

Table 2. Results of the search trail analysis for the short and long tasks. Means, Standard Deviation, Median (used in the Wilcoxon Matched-Pairs test)
as well as Significant differences of search trail feature considering both interfaces. The values in bold show the significant differences. BL=baseline,
EW=Exploration Wall.

provement was statistically significant, t(9)=3.519, p < 0.01.
This is a direct consequence of the improvement in the recall
(M=0.142, SD=0.094, t(9)=4.790, p < 0.001). The differ-
ence in precision was not significant (M=0.005, SD=0.366)
which indicates that while Exploration Wall improves recall
it retains precision. In terms of effectiveness, no statistically
significant differences between the systems were found in the
short task.

Figure 5 shows the query-level effectiveness for the long tasks
and the short task split by participants. Exploration Wall con-
stantly outperforms the baseline system in terms of recall and
F-measure in the long task. The effect is steady across partic-
ipants. No significant differences between the systems were
found in the short task.

Expert Rating
Unlike the effectiveness, the expert rating showed no signifi-
cant differences between the Exploration Wall and the Base-
line. Regarding the relevance of selected items, the mean
values for the long task were M=3.54, SD=0.67 for Explo-
ration Wall and M=3.45, SD=0.82 for Baseline, while for
short task they were M=3.60, SD=1.23 for Exploration Wall
and M=3.83, SD=0.99 for Baseline. Regarding the the rele-
vance of the essays produced in the end of the long task the
mean values were M=3.90, SD=0.75 for Exploration Wall
and M=4.05, SD=0.69 for Baseline.

Search Trail Analysis
Table 2 shows the results of the search trail analysis. The
Shapiro-Wilk test indicated that the search trail data did not
follow a normal distribution, and the Wilcoxon Matched-
Pairs test was used for significance testing. The users in the
Exploration Wall condition were found to use all of the mea-
sured interaction features significantly more than the users in
the baseline condition in the long task. Differences were also
found in the short task. The users in the Exploration Wall

condition typed less, branched more, and used more parallel
queries.

Usability and Engagement
The results for the mean of answers of the SUS questionnaire,
i.e., for usability, were M=78.85, SD=12.43 for Exploration
Wall and M=62.25, SD=15.65 for the baseline. A paired t-
test showed a significant difference (t(9)=2.36, p < 0.05)
between the two systems, revealing higher usability for Ex-
ploration Wall. The results of the UES questionnaires are also
favorable for Exploration Wall. Wilcoxon Matched-Pairs test
shows that in 70% of the questions there is a significant dif-
ference between the interfaces, all in favour of Exploration
Wall.

DISCUSSION AND CONCLUSIONS
Challenges in supporting exploratory search include provid-
ing resources for formulating queries in unknown areas [11],
learning about possible directions in the information space
[29], and going through long list of results with low informa-
tion gain [38, 5]. In particular on keyboard-less touch de-
vices the challenges are aggravated by typing efforts. We
introduced Exploration Wall a novel user interface that ad-
dresses these challenges with a principled design. The found-
ing principle is to transform results into entities that can be
flexibly manipulated and used for creating queries and search
streams. The wall is a canvas where parallel and previous
search streams are juxtaposed and provide a spatial explo-
ration of the information space and possible exploration di-
rections. The manipulation includes inspecting relationship
between entities and facilitating the creation of new search
streams.

The study shows how Exploration Wall is an effective tool for
exploratory search on touch surfaces. Participants using Ex-
ploration Wall were able to exploit parallel search streams to
iteratively refine their queries and deeply explore the search



tree. The difference in recall proves that more relevant docu-
ments were retrieved when using Exploration Wall.

Exploration Wall also led to a more active search behavior,
with more queries per minute and more branches. In addition,
if we consider the fact that participants used more parallel
queries with Exploration Wall (parallel streams) than with the
baseline (parallel tabs), we can conclude that the participants
took advantage of parallel streams with consequent avoidance
of text input.

Results from the UES questionnaire also show a better user
engagement, a factor that is likely to have contributed to the
more active search behavior. In addition, the SUS scale shows
that Exploration Wall presents a better usability than conven-
tional search interfaces on tablets.

The study confirms how our design approach facilitates query
formulation, by directing exploration in unknown areas, and
providing alternatives to text inputs. While little or no dif-
ferences were appreciated in short tasks, Exploration Wall
proved to be an effective tool for long tasks by showing im-
proved recall while preserving precision, as well as improved
user engagement and satisfaction.

In addition to the positive results, this work is adaptable to
many applications and setups that would enable new possi-
bilities to be found through deeper study of user behavior
(e.g. search strategies and nature of composed queries). It has
important implications for future development of exploratory
search systems in particular considering multimodal interac-
tion and user interface for entity oriented search [27]. The
principles are applicable to other datasets such as for example
news search [4] as well as other devices and sizes (e.g. large
multi-touch screen for collaborative work, mobile devices for
mobility and privacy, combinations of devices, desktop).

Considering this, as well as the growing popularity of touch
devices, our work offers a powerful and flexible template to
be considered when designing user interfaces supporting ex-
ploratory search.
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ABSTRACT
The user’s understanding of information needs and the in-
formation available in the data collection can evolve during
an exploratory search session. Search systems tailored for
well-defined narrow search tasks may be suboptimal for ex-
ploratory search where the user can sequentially refine the
expressions of her information needs and explore alternative
search directions. A major challenge for exploratory search
systems design is how to support such behavior and expose
the user to relevant yet novel information that can be difficult
to discover by using conventional query formulation tech-
niques. We introduce IntentStreams, a system for exploratory
search that provides interactive query refinement mechanisms
and parallel visualization of search streams. The system mod-
els each search stream via an intent model allowing rapid user
feedback. The user interface allows swift initiation of alter-
native and parallel search streams by direct manipulation that
does not require typing. A study with 13 participants shows
that IntentStreams allow better support for branching behav-
ior compared to a conventional search system.

Author Keywords
User interface design; information exploration; parallel
browsing.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
Exploratory search activities confront users with problems in
formulating queries and identifying directions for informa-
tion exploration. Studies show that searchers tend to perform
more than one task simultaneously: approximately 75% of
submitted queries involve a multitasking activity [22, 21].
Users engage in multitask search with and without parallel
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browsing, but parallel browsing is a common activity and
more prevalent than linear browsing. In parallel browsing,
also called branching [13], users visit web pages in multiple
concurrent threads, for example, by opening multiple tabs or
windows in web browsers [14]. Branching in browsing has
been studied extensively [6], but little has been done to sup-
port nonlinear and parallel browsing. Recent visual search
user interfaces have shown the effectiveness of interacting vi-
sually with query elements, however, there are no solutions
to support fluid branching and parallel search.

We introduce IntentStreams, a system supporting parallel
browsing and branching during search without the need to
open new tabs. It presents parallel streams of searches, where
each stream shows a list of resulting documents and key-
words, and a display of the underlying queries as keywords
representing the search intent of the stream. New streams are
initiated by the user, where the search intent of a new stream
is initialized by typing a traditional query or by dragging key-
words available in any of the streams. In each stream, in addi-
tion to the user-chosen keywords, the system proposes other
relevant keywords and orders them vertically by their pre-
dicted relevance. The users can change the relative relevance
of keywords in the query intent of each stream and branch
new streams by simply dragging keywords. IntentStreams
was tested using 25 million news articles crawled from public
news sources in a comparative study with 13 subjects.

The experimental results show that IntentStreams better sup-
ports parallel search and branching behavior when compared
to a conventional search system.

Exploratory search is commonly distinguished from lookup
search and has been described as combining exploratory
browsing and focused searching [23, 5]. These and other
information seeking frameworks [23, 27] partially overlap,
emphasizing different aspects but similarly trying to charac-
terise iterative sense making and refinement of search intents.
As a response, personalization techniques have been devel-
oped to support query formulation and relevance feedback.
Several techniques exist for supporting query formulation or
for processing results to help re-rank, filter [31] or expand
the query [8, 26]. For example, relevance feedback [16] and
query or term suggestions [17] can be effective in short-term
navigational search, but give limited support for exploratory



search. However, increasing evidence in information retrieval
research suggests relevance feedback in exploratory search
often leads to a context trap where after a few iterations of
feedback users have specified their context so strictly the sys-
tem is unable to propose anything new [12, 23].

Visual search interfaces. Recently, search systems use vi-
sualization of the resulting information for faster relevance
judgment and effective feedback [11, 15, 20, 24, 32]. Several
approaches to visualize results have been explored, including
multiple linked lists, scatter plots, graphs and their combina-
tions [30, 20]. Such visual search systems are distinguished
from traditional query composition ones through their em-
phasis on rapid filtering to reduce result sets, progressive re-
finement of search parameters, continuous reformulation of
goals, and visual scanning to identify results [1]. Visual ap-
proaches provide better support for exploration in a variety of
ways: supporting sense making by incrementally and inter-
actively exploring the network of data [7], showing how vi-
sualization supports user involvement in the recommendation
providing rationale behind suggested items [34], visualizing
relations of different queries and result sets [2], supporting
entity search on touch devices [18]. Recent work shows how
users can view and manipulate their search intent models pro-
vided by the system [2, 3, 29, 9, 28]. However, there is still a
lack of solutions that specifically address branching behavior
while supporting query formulation.

INTENTSTREAMS
A user performing exploratory search typically needs to steer
the exploration by query refining or reformulating as she
makes better sense of the information space. We identified
two challenges impairing a proper steering support:

1. Supporting information comparison from several queries:
Traditional search systems show one set of results at a time.
To compare information from distinct queries, one must rely
on memory or complicated browser windows arrangements.

2. Formulating queries in unknown areas: Exploratory search
tasks usually require the user to iteratively formulate queries
in a field she is unfamiliar with. To progress with the search,
the used needs to go through long lists of results with low
information gain to acquire new terms and notions to refor-
mulate the query.

We tackle these challenges through a combination of a user
interface supporting parallel search streams, and user intent
modeling.

The User Interface
IntentStreams provides a unique horizontally scrollable
workspace divided in two areas: the keywords area at the
bottom and the results area on top (Figure 1). By clicking
the workspace, the user is prompted to type a first query. The
system returns a list of relevant documents in the results area
and a set of related keywords in the keywords area. Keywords
are positioned vertically by weight and horizontally by topic
proximity. The vertical arrangement is called a stream and
can be easily manipulated, modified and refreshed. The con-
tent of a document can be seen by clicking the title. A click

and hold on a document highlights keywords directly related
to it. A click and hold on a keyword highlights related docu-
ments. By moving keywords vertically, the user can change
their weight; by hitting the refresh button, the stream then
updates and presents a new set of documents and keywords.
New parallel streams can be created by clicking next to an
existing stream and typing a new query, or simply by drag-
ging a keyword outside of its stream. Since the workspace is
horizontally scrollable, the amount of parallel streams a user
can create is limited only by computer memory. The amount
of parallel streams that can be shown simultaneously is deter-
mined by the display resolution. Streams can be dragged and
rearranged. A button lets the user delete streams.

Interactive Intent Model
For each search stream, the interactive intent model is similar
to the model in a previous non-parallel system [29] and has
two parts: a model for retrieval of documents, and a model
for estimating the user’s search intent (relevance of keywords
to the user’s information need). We describe both below.

Document retrieval model. For each stream, we estimate a
relevance ranking where documents are ranked by their prob-
ability given the intent model for the stream. We use a un-
igram language model. The intent model yields a vector v̂
with a weight v̂i for each keyword ki. The v̂ is treated as
a sample of a desired document. Documents dj are ranked
by probability to observe v̂ as a sample from the language
model Mdj

of dj . Maximum likelihood estimation yields

P̂ (v̂|Mdj
) =

∏|v̂|
i=1(P̂mle(ki|Mdj

))v̂i . We regularize prob-

abilities P̂mle(ki|Mdj
) in dj towards overall keyword pro-

portions in the corpus by Bayesian Dirichlet smoothing. In

each stream the dj are ranked by αj = P̂ (v̂|Mdj
). To expose

the user to more novel documents we sample a document set
from the ranking and show them in rank order. As in [9, 29]
we use Dirichlet Sampling based on the αj , and favor doc-
uments whose keywords got positive feedback by increasing
their αj [10].

User intent model. For each stream, the intent model esti-
mates relevance of keywords from feedback to keywords. For
a stream launched by a typed query, we use the query with
weight 1 as the initial intent model; for a stream launched by
dragging a keyword we use the keyword with weight 1. The
user gives feedback as relevance scores ri ∈ [0, 1] for a subset
of J keywords ki, i = 1, . . . , J in the stream; ri = 1 means
ki is highly relevant and the user wishes to direct the stream
in that direction, and ri = 0 means ki is of no interest.

Let ki be binary n × 1 vectors telling which of the n docu-
ments ki appeared in; to boost documents with rare keywords
we convert the ki to tf-idf representation. We estimate the
expected relevance ri of a keyword ki as E[ri] = k�

i w. The
vector w is estimated from user feedback by the LinRel al-
gorithm [4]. In each search iteration, let k1, . . . , kp be the
keywords for which the user gave feedback so far, let K =
[k1, . . . ,kp]

� be the matrix of their feature vectors, and let

rfeedback = [r1, r2, . . . , rp]
� be their relevance scores from

the user. LinRel estimates ŵ by solving rfeedback = Kw,
and estimates relevance score for each ki as r̂i = k�

i ŵ .



Figure 1. a. The first query (in this case mobile phone”) returns a search stream composed of news articles most relevant to the query, as well as a set
of most relevant keywords extracted from a larger set of related articles. b. The user can modify the weight of the keywords by sliding them vertically,
after which the stream will refresh, updating articles and keywords accordingly. If dropped outside their initial stream, keywords can either trigger a
new search stream or be passed to an already existing parallel stream.

To expose the user to novel keywords, in each stream we show
keywords ki not with highest r̂i, but with highest upper con-
fidence bound for relevance, which is r̂i+ασi, where σi is an
upper bound on standard deviation of r̂i, and α > 0 is a con-
stant for adjusting the confidence level. In each iteration, we
compute si = K(K�K+λI)−1ki where λ is a regularization
parameter, and show the ki maximizing s�i r

feedback+ α
2 ‖si‖

representing estimated search intent. We optimize horizontal
positions of the shown ki by dimensionality reduction [33];
ki get similar positions if their relevance estimate changes
similarly with respect to a set of additional feedback.

EVALUATION
We evaluated the system to find out if and how IntentStreams
supports parallel browsing and branching behavior. In-
tentStreams was compared against a baseline system with an
interface similar to a traditional Google search interface. Our
hypothesis was that, compared to the baseline, IntentStreams
generates (1.) more parallel streams, (2.) more revisits, and
(3.) more branches. We used the following metrics: num-
ber of parallel streams, number of revisits, and number of
branches. In the baseline, the number of parallel streams de-
notes the number of tabs opened, a revisit indicates returning
to an already open tab, and a branch denotes a query updated
after a revisit. In IntentStreams, a revisit occurs when a user
performs certain activities (opening an article, weight change)
on a previously created stream. A branch occurs when a new
stream is created from an existing one. That includes both
creating a new query by dragging a keyword or updating the
existing stream by modifying the weights of its keywords.

Method
We evaluated the system with 13 volunteers (4 female). The
participants’ age ranged from 19 to 36 with mean of 28.4
(SD = 4.05). Their levels of education were: 8% PhD,
46% Master, 38% Bachelor, 8% High School. Each partic-
ipant received two movie tickets for their participation. We
used a within-subject design, where participants were asked
to perform two tasks, one with IntentStreams and one with
the baseline. We counterbalanced by changing the order in

which the two tasks were performed and the order in which
the two systems were used.

The task was set in an essay writing scenario and formulated
as follows: You have to write an essay on recent developments
of X where you have to cover as many subtopics as possible.
You have 20 minutes to collect the material that will provide
inspiration for your essay. You have additional 5 minutes to
write your essay. The two tasks performed by the participants
covered two topics: (1.) NASA, and (2.) China Mobile.

Experiments were run in a laboratory on a laptop with OS
X operating system. Each participant signed a consent form.
To determine the eligibility, we asked candidates how famil-
iar they were with each chosen topic on a 1-5 scale, where
1 means “no knowledge” and 5 means “expert knowledge”.
Only those with a score lower than 3 were considered eli-
gible. Before the experiment, participants received detailed
instructions and performed a 5-minute training session.

To evaluate the system, we connected it to a news repository
of English language editorial news articles crawled from pub-
licly available news sources from September 2013 to March
2014. The database contains more than 25 million docu-
ments. The documents were originally collected for mon-
itoring media presence of numerous interested parties, and
hence the collection has wide topical coverage. All the docu-
ments were preprocessed by the Boilerpipe tool [19] and the
keyphrases were extracted with the Maui toolkit [25].

The baseline system was connected to the same news repos-
itory. In the baseline system, users could type queries and
receive a list of relevant news articles. To start a new parallel
query, a new tab had to be opened.

FINDINGS
Table 1 shows the results of the log analysis. In the 20–
minute long sessions, IntentStreams on average generated
7.84 more queries (SD = 7.27), 6.38 more parallel streams
(SD = 4.03), 4.54 more revisits (SD = 4.52), and 3.62
more branches (SD = 4.01). A paired t-test indicates that all
those differences are statistically significant (p < 0.01).



Figure 2. Example of branching behavior from the case study: top - Baseline; bottom - IntentStreams.

Parallel search supported in IntentStreams. Results show
that users created more parallel streams than opened new tabs.
While the system allows the creation of parallel streams, the
users revisit earlier ones consistently, which denotes parallel
search behavior. In fact, revisits are higher in the IS condition.

Branching supported in IntentStreams. In IntentStreams,
more queries and parallel streams were created through
branching. Figure 2 presents a visual representation of a par-
ticipant’s search behavior, showing the difference between
the linear search behavior in the baseline and the more ar-
ticulated search behavior in IntentStreams.

Further, IntentStreams supports more exploration. In IS,
more exploration of the information space was done as can
be seen from the higher number of queries.

CONCLUSIONS
We introduced the IntentStreams system for exploratory
search of news based on parallel visualization of smart search
streams. It models each search stream by an intent model, al-
lows rapid tuning by feedback to keywords, and allows rapid
initiation of new streams by keyword interaction without typ-
ing. Initial experiments show that users take advantage of
the rich parallel search opportunities and engage in much
stronger parallel browsing and branching behavior than in a
traditional system.

This is an important finding as current browsing and search-
ing behavior is already characterized by multitask search (in
the same query field users alternate tasks [22, 21]), parallel
browsing (users browse on parallel tabs or windows [14]), and
engage in branching (a new tab or window is created from a
link or result of a previous window or tab [13]). Branching

Table 1. Comparison between IntentStreams (IS) and the baseline (BL).
The number of queries, parallel streams, revisits, and branches, for each
participant P1,...,P13.

queries par. streams revisits branches
BL IS BL IS BL IS BL IS

P1 5 5 2 5 0 7 0 1
P2 5 4 1 2 1 0 1 0
P3 7 17 1 12 1 6 1 4
P4 9 11 1 6 0 2 0 2
P5 14 18 1 12 0 9 0 7
P6 1 8 1 5 0 0 0 0
P7 12 18 7 14 5 7 2 3
P8 22 26 3 12 6 15 1 8
P9 6 18 6 12 4 4 0 0
P10 8 11 7 11 6 5 0 0
P11 8 21 7 11 7 12 0 8
P12 16 35 11 14 3 14 1 9
P13 3 26 3 18 0 11 0 11

has been shown to be more important in informational brows-
ing than navigational search [14]. The approach proposed in
IntentStreams can be incorporated into other search interfaces
to provide an effective way to branch search.
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Interactive intent modeling: Information discovery
beyond search. Communications of the ACM 58, 1 (Dec.
2014), 86–92.

29. Ruotsalo, T., Peltonen, J., Eugster, M., Głowacka, D.,
Konyushkova, K., Athukorala, K., Kosunen, I.,
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ABSTRACT
We present visual re-ranking, an interactive visualization technique
for multi-aspect information retrieval. In multi-aspect search, the
information need of the user consists of more than one aspect or
query simultaneously. While visualization and interactive search
user interface techniques for improving user interpretation of search
results have been proposed, the current research lacks understand-
ing on how useful these are for the user: whether they lead to quan-
tifiable benefits in perceiving the result space and allow faster, and
more precise retrieval. Our technique visualizes relevance and doc-
ument density on a two-dimensional map with respect to the query
phrases. Pointing to a location on the map specifies a weight distri-
bution of the relevance to each of the query phrases, according to
which search results are re-ranked. User experiments compared our
technique to a uni-dimensional search interface with typed query
and ranked result list, in perception and retrieval tasks. Visual re-
ranking yielded improved accuracy in perception, higher precision
in retrieval and overall faster task execution. Our findings demon-
strate the utility of visual re-ranking, and can help designing search
user interfaces that support multi-aspect search.

Keywords
Information visualization; information retrieval; multi-aspect search;
multi-dimensional ranking

1. INTRODUCTION
Multi-aspect search refers to activities in which the information

need of the user consists of more than one aspect or query simul-
taneously. Such situation arises in contexts such as exploratory
search, item selection and multi-criteria decision making. In ex-
ploratory search activities, the user’s goal is not clearly defined,
and the information space is usually unfamiliar to the user. In such
scenarios, the user might start from a small set of notions, with the
intent of learning and making sense of the related document space.
In this case, conventional result lists offer little insight of the data
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Figure 1: Interactive relevance map visualization. (a) Position
of a document marker is computed as a weighted linear com-
bination of relevance to individual query phrases r1, r2, r3. (b)
Radius of a document marker encodes the overall relevance of
the corresponding document to all query phrases. (c) Opacity
encodes the density of document mass in a certain position of
the 2D plane. (d) The result list can be re-ranked by relevance
and the distance to the selected position rr.

and nothing indicates how the given results relate to the multiple
aspects of the query. For example, a user looking for recent liter-
ature on physiological measurements might want to search for as-
pects such as ‘Electroencephalography’, ‘Electrodermal Activity’,
‘Electromyography’ and quickly be able to assess how the result
space is distributed and how the retrieved documents relate to each
aspect.

Item or product selection is currently widely supported by
faceted search and search result clustering. Such systems are
widespread in e-commerce and library catalogs. These techniques
allow the user to investigate the results through the use of multiple
filters, but they offer limited support for perceiving the result space
and weighting the aspects accordingly. Conventional query-based
search tools usually visualize results as a one-dimensional ranked
list, and offer limited support for multi-aspect retrieval. Another
example is multi-criteria decision making, a well researched pro-
cess that often requires multi-aspect search [8]. Take the example
of a user looking online for a new car. Usual faceted tools allow her
to select filters to narrow down the offering: e.g., a manufacturer,
a price range, a fuel type. Such criteria require the user to have



a specific goal in mind, whereas a typical user would be inclined
to come up with more vague criteria such as: good gas-mileage
(no specific threshold in mind), family-friendly, and/or fun to drive.
Such criteria are not binary, and the user can expect to find on the
market several satisfying solution with different tradeoffs, instead
of one ideal car. On the other hand, looking for such criteria using
one single unified query on a conventional search engine returns a
list of results that does not reflect the user’s preferences and does
not allow for conscious tradeoffs.

In all these cases, the user should be able to quickly assess dis-
tribution of the results with respect to how they relate to each re-
searched aspect, and then be able to rapidly inspect them, which
is possible if the user 1) perceives the distribution to understand
which parts of the result space contain interesting information (i.e.
what are the tradeoffs between the query phrases) and 2) is able to
determine the tradeoff rapidly using the visualization.

We present a visual re-ranking technique that uses multi-
dimensional ranking and two-dimensional interactive visualization.
Inspired by earlier work on visual information retrieval and seek-
ing [33, 2], the technique allows the user to perceive the relevance
distribution with respect to multiple query phrases by using a rele-
vance map visualization. A novel feature of this technique is that
it allows the user to investigate specific areas on the map by re-
ranking the results through pointing at the map. The method es-
timates document relevance with respect to user-specified query
phrases in a multi-dimensional space in which the query phrases
define the dimensionality. The method then computes a layout for
the documents on a two-dimensional plane where relative distances
of document markers to each query phrases are defined by their re-
spective relevance, overall relevance of each document is visualized
as the radius, and higher document density translates in darker ar-
eas. (see Figure 1). The visualization allows the user to perceive
how the result space is populated with respect to both density and
relevance to some query phrases.

Rather than relying only on a one-dimensional ranking algorithm
to select the documents most relevant to a query, the role of the
system is to organize and present information about many docu-
ments and multi-dimensional query phrases in a way that makes
comparison possible. Re-ranking by pointing allows users to rank
documents with respect to relative relevance weights to the query
phrases. For example, expressing that a user wants the ranking to
be based a little on both query phrases interaction and interfaces,
but mainly on the phrase design can be done simply by pointing to
an area on the map that is inside a triangle of the query phrases but
closer to the concept design.

The approach was evaluated in a controlled laboratory study with
20 participants performing two tasks: perception and retrieval. In
the perception task, participants were asked to find out how a doc-
ument space was populated and organized with respect to specific
topics, such as whether there was more research about interaction
or design. In the retrieval task, the participants were asked to find
documents with varying relevance to several topics, such as a doc-
ument that was mainly related to design, but slightly related to in-
teraction and interfaces.

Our results show significant improvement in task completion
time as well as improved accuracy in perception, and improvement
in task completion time in retrieval, without compromising effec-
tiveness measured as the quality of the task outcome. These results
suggest that relevance mapping and re-ranking is effective in cases
when the initial one-dimensional result list is not enough for the
user to analyze the information.

The contributions of this paper are: (1) We present a visual re-
ranking approach to multi-aspect information retrieval in which

users can perceive the result space and rapidly re-rank the result
list by pointing to the visualization. (2) We demonstrate that users
can complete perception and re-ranking tasks significantly faster
without compromising the effectiveness. (3) While different ap-
proaches for search result visualization have been proposed in the
past, up to our knowledge, this is the first study that empirically
verifies the benefits of interactive visualization for multi-aspect in-
formation retrieval.

2. RELATED WORK

2.1 Visual Information Retrieval and Seeking
Information spaces can be huge and thus hard to comprehend.

However, visualizing the space and allowing the user to directly
interact with and manipulate objects in the space facilitates com-
prehension. For instance, when the results of actions are shown
immediately and when typing is replaced with pointing or select-
ing, exploration and retention increase while errors decrease [46].
For information seeking, the following visualization and interac-
tion features are of particular importance [43]: (a) dynamic query-
ing for rapid browsing and filtering to view how results change; (b)
a starfield display for the immediate, continuous, scalable display
of result sets as different queries are processed; (c) tight coupling
of queries to easily use the output of one query as input to another
[1]. For instance, a user study indicates that dynamic querying sig-
nificantly improves user response time and enthusiasm. Using such
techniques, systems like FilmFinder [1] support querying over mul-
tiple varying attributes such as time, while showing the changing
query results in the context of the overall data. User studies also in-
dicate that user interfaces that show the result list together with an
overview of the result categories encourage a deeper and more ex-
tensive exploration of the information space [25], especially when
the system allows relevance feedback to be given on such categories
to direct the exploration [40, 39].

2.2 Document Collection Visualization
Various visualizations have been proposed for large document

collections [24]. Most of these techniques adopt the visual infor-
mation seeking mantra [44] to provide an overview at first and de-
tails only on demand. The documents are often visualized on a 2D
plane, in the form of a map based on a similarity metric. Higher-
level entities, such as topics, are also displayed on the map for im-
mediate and better understanding of the document space organiza-
tion.

Document Atlas [12] uses Latent Semantic Indexing and multi-
dimensional scaling (MDS) to extract semantic concepts from the
text and position the documents with respect to the concepts. Doc-
ument densities around concepts are visualized as a heat map. On
mouse hover, common keywords in the area are listed, and on zoom
in, more details are shown.

Self-Organizing Maps have also been used by systems like
WEBSOM [20] and Lin’s maps [26] to position the documents on
the 2D plane. WEBSOM also suggests areas in the map that could
be relevant to the user’s search query. Lin’s maps are further split
up into regions whose area indicates the number of documents with
specific related terms.

Other techniques visualize the documents as glyphs to indicate
additional inter-document relationships and metadata on the map
(e.g., [38, 29]). Various metaphors have also been adopted; ex-
amples include the terrain metaphor, in which dense regions in the
map are seen as mountains with valleys in between [9, 49]; the
galaxy metaphor, in which documents are seen as stars in different
constellations (document clusters) [16]; and the physical metaphor,



in which documents are considered to be moving particles and the
inter-particle forces move similar documents closer to each other
and dissimilar documents apart [10]. Visualizations with two di-
mensions and meaningful axes (e.g., categories vs. hierarchies
[45], query results vs. query index [6, 23], production vs. popu-
larity [1]) have also been proposed.

These visualizations provide an overview of the entire document
collection, but they do not allow the user to direct and focus the ex-
ploration as required. A user-driven rather than a data-driven tech-
nique could be more helpful when searching for documents relevant
to multiple keywords. To that end, such a technique should visual-
ize the ranking of documents with respect to multiple keywords so
the user can easily judge the relevance of documents to each of the
keywords of interest [33]. However, most of the current techniques
only visualize whether a document is relevant or not to a keyword
using set visualizations [4], without showing the document’s degree
of relevance to each keyword.

2.3 Multi-Aspect Search
In multi-aspect search the information need of the user consists

of more than one aspect or query simultaneously. As a conse-
quence, an item in a collection needs to be ranked differently based
on its multiple attributes. The Graphics, Ranking, and Interac-
tion for Discovery (GRID) principles and the corresponding rank-
by-feature framework state that interactive exploration of multi-
dimensional data can be facilitated by first analyzing one- and two-
dimensional distributions and then by exploring relationships be-
tween the dimensions, using multi-dimensional rankings to set hy-
potheses and statistics to confirm them [41]. However, compar-
ing, analyzing and relating different ranks is difficult and requires
an interactive visualization that supports the various requirements
identified by Gratz et al. [13].

Multi aspect search support is provided in Song et al. [47], with
the proposal of a strategy for multi-aspect oriented query summa-
rization task. The approach is based on a composite query strategy,
where a set of component queries are used as data sources for the
original query. Similarly Kang et al. [19] propose a multi-aspect
relevance formulation, but in the context of vertical search.

LineUp [13] is an interactive visualization that uses bar charts
to support the ranking of objects with respect to multiple hetero-
geneous attributes. Stepping Stones [11] visualizes search results
for a pair of queries, using a graph to show relationships between
the two sets of results. Sparkler [14] allows to visually compare
results sets for different queries on the same topic.Tilebars [15]
visualizes the frequency of different words in various sections of
documents as a heat map and ranks the documents accordingly.
Similarly, HotMap uses a two-dimensional grid layout to augment
a conventional list of search results with colors indicating how hot
(relevant) specific search terms are with respect to the document
[18]. Ranking cube [50] is a novel rank-aware cube structure that
is capable of simultaneously handling ranked queries and multi-
dimensional selections. RankExplorer [42] uses stack graphs for
time-series data. Techniques for incomplete and partial data have
also been proposed [22]. TreeJuxtaposer [31] was primarily de-
vised to compare rankings.

For document collections, the vector space model could be used,
such that each document and search query is a vector in a multi-
dimensional space, each axis is a term, and the document position
is determined by the frequencies of each term in that document
(e.g., [36]). Visualizations of such a model could aid understand-
ing of the document space, but more research is required, particu-
larly for user-driven approaches that allow the user to specify the
dimensions of interest [33].

2.4 User-driven Visualization
VIBE [33] is one of the most well-known user-driven multi-

dimensional ranking visualization for large document collections.
To indicate the subspace of interest, the user first enters two or more
query terms, known as "points of interest" (POIs). POIs are then
shown (as circles) on a 2D plane, together with documents (as rect-
angles) related to at least one POI, forming a map. The position
of each rectangle indicates the relevance of the corresponding doc-
ument to each of the POIs. The size of a rectangle indicates the
relevance of that document to the search query. Citation details of
documents selected from the map are listed; clicking on an item in
the list opens the full document. Any time a POI is added, removed
or moved, the map is updated accordingly. However, regions of the
map with numerous close-by documents are not easily detectable
because the rectangles are not color filled; using semi-transparent
color filled shapes reduces overplotting [28] and facilitates percep-
tual ordering of different regions in the map by their density [27].
Also, documents are not re-ranked as the user navigates over the
map.

Variants of VIBE include: WebVIBE [30], in which POIs act like
magnets that attract documents containing related terms; VR-VIBE
[7], which visualizes the space in 3D (for more space to view docu-
ments between POIs) and depicts relevance by color; and Adaptive
VIBE [3], in which POIs are query terms (as in VIBE) but also user
profile terms that are automatically extracted from user notes.

Similar to VIBE, GUIDO [32], DARE [53] and TOFIR [52] also
allow users to specify POIs and display documents based on their
relevance to the POIs. However, in GUIDO each POI is an axis
(not an icon on a 2D plane) and documents are positioned based
on their absolute rather than relative distances from the POIs. In
DARE and TOFIR, relevance to POIs is indicated by both distance
and angle.

Other user-driven systems, like combinFormation [21], Topic-
Shop [5] and InfoCrystal [48], retrieve and display search re-
sults related to user-defined keywords but do not visualize the re-
sults’ multi-dimensional ranks. Similarly, HotMap [18] supports a
weighted re-ranking of the search results, but without leveraging a
graphical interactive approach for specifying the weights. Word-
Bars [17] also supports re-ranking of the search results, but uses
additional terms extracted from the search results rather than rely-
ing on the query terms.

While similar techniques of mapping data to 2D visualization for
better user interpretation have been proposed, the current research
lacks understanding on (1) how useful these are for the user and
(2) whether they lead to quantifiable benefits in specific tasks re-
lated to search activity. This work is the first to demonstrate a tech-
nique where the visualization can be effectively used for re-ranking
search results. It is also the first that empirically verifies that users
perceive the document space faster and are able to execute retrieval
faster without compromising the quality of retrieved information.

3. RELEVANCE MAPPING
The method for relevance mapping is first illustrated with an

overview from the user perspective. Then the computation of the
layout and document visualization is explained.

3.1 Overview
Figure 2 shows an example of the relevance map visualization.

Here, a user investigates a document space delimited by three query
phrases with corresponding markers on the map: design, interac-
tion and interface. A fourth query marker, exploration, is greyed
out because it has been disabled to permit a temporary focus on
the three remaining query markers. The user has positioned the



Figure 2: The relevance map (1) displays documents in relation to multiple query phrases, displayed as red text labels. Here, a fourth
query phrase is greyed out (disabled). The exploration cursor (in blue) is located at the user-specified position to be used for the
re-ranking. Red document markers indicate the position of articles currently on display in the result list (2).

pointer (blue flag with a smiley face) close to interaction to inves-
tigate a collection of documents highly related to interaction and
more loosely related to interface and design. As a result, the list
shows articles ranked with a specific focus on the selected area.

Query markers are created by inputting keywords in the query
box in the top left. Each query marker can be activated or disabled
by clicking it. Documents returned by the system are visualized on
the map as semi-opaque dots scattered between the query markers
with respect to their individual relevance. The overall relevance of
a document is indicated by the radius of the dot. The partial opac-
ity translates overlapping into a darkened tint that cues the user on
the number of document markers in any given area. Query markers
can be moved/dragged around on the map, which updates the po-
sition of the document markers. The position of the pointer can be
positioned by dragging or tapping on the map. Any change in the
pointer position or query marker organization triggers a re-ranking
of documents based on their overall relevance and proximity to the
pointer.

The ranked articles appear in a conventional one-dimensional list
layout in the result list (2). Documents being displayed in the re-
sult list are shown as red dots on the map. The result list is scrol-
lable. Each document is displayed with its title, authors, publica-
tion venue, abstract and keywords. Abstracts are first shown par-
tially but can be displayed in full at a click or a tap. Keywords are
interactive, as they can be added to the map as new query markers
on a tap.

3.2 Layout
The data used to compute the relevance map layout consists of a

set of m query phrases q1...m ∈ Q, a set of k documents d1...k ∈ D and
relevance estimates r1...k ∈ R for each of the k documents according
to each of the m query phrases.

Each query marker and each document marker has a position on
the plane, posqx , posqy and posdx , posdy respectively. The position
of each query phrase marker is defined by the user by moving it to
the desired position on the plane. The position of each of the doc-
ument markers is computed as a weighted linear combination of

the relevance scores to each query phrase and the relative position
of the query marker. Intuitively, document markers are positioned
proportional to their relevance to each of the query phrases. For-
mally, the position of an jth document marker on dimension dim
is:

posd jdim
=

|Q|∑
i

rqid j · posqdim

|Q| (1)

so that posdidim
is the coordinate of document di with respect to

dimension dim. On a two-dimensional plane dim can be x or y.
The relevance estimation rqid j of a document to a query phrase is
explained in the next section.

3.3 Document Marker Visualization
The radius of the document marker is directly the relevance rqid j .

That is, the size of the dot is defined by the relevance.
The opacity of overlapping document markers is used to visu-

alize the density of the document mass in a particular position on
the plane. We use a standard computation of opacity [35] in which
opacity of o of a pixel on the plane is computed as:

o = 1 − (1 − f )n (2)

where n is the number of overlapping layers and f is a constant
setting of an opacity effect of an individual layer and was set to
f = 0.95.

4. RELEVANCE ESTIMATION
The relevance estimation used in ranking and computing the doc-

ument marker layout and size are explained in this section.

4.1 Relevance Estimation
Given the document collection and a set of query phrases that

specify the multiple dimensions to be used in ranking and visual-
ization, the relevance estimation method results in a set of probabil-
ities r1...k ∈ R for each document d of k documents in the collection
according to each query phrase q1...m ∈ Q.



To estimate the probabilities from the query phrases Q and docu-
ments D, we utilize the language modeling approach of information
retrieval [34]. We use a multinomial unigram language model. The
vector Q of query phrases is treated as a sample of a desired doc-
ument, and document dj is ranked according to a query phrase qi

by the probability that qi would be generated by the respective lan-
guage model Md j for the document; with the maximum likelihood
estimation we get

P(q|Md j ) =

m∏
i=1

P̂mle(qi|Md j )
wi , (3)

where wi is the weight of each of the query phrases and is set as
wi =

1
|Q| as default. In case of interactive re-ranking wi is weighted

based on user interactions as explained in the next section.
To estimate the relevance rqid j

of an individual document dj with

respect to an individual dimension defined by each query phrase
qi and avoid zero probabilities, we then compute a smoothed rele-
vance estimate by using Bayesian Dirichlet smoothing for the lan-
guage model so that

rqid j
= Pmle(qi|Md j ) =

c(qi|dj) + μp(qi|C)∑
k

c(q|dj) + μ
, (4)

where c(di|dj) is the count of a query phrase qi in document dj,
p(qi|C) is the occurrence probability (proportion) of a query phrase
qi in the whole document collection, and the parameter μ is set to
2000 as suggested in the literature [51].

4.2 Ranking
Given the probability estimates for each of the documents, we

apply a probability ranking principle [37] to rank the documents in
descending order of their probabilities for the query phrases. These
are then used to compute the total ordering of the document list.
The top-k ranking computation remains efficient by making use of
priority queue with complexity log(k) of k search results with pre-
sorted inverted index.

The user can interactively re-rank the result list by selecting a
point on the relevance map. The point for the desired re-ranking is
defined by its two-dimensional coordinates rrx and rry with respect
to the two-dimensional coordinates of the query markers posqix

and
posqiy

for the i = 1 . . . |Q| query phrases.
The re-rank weighting for an ith query marker is computed as the

Euclidean distance between the posqix
and posqiy

and the rrx and
rry. Formally,

wi =

√
(posqix

− rrx)2 + (posqix
− rry)2

|Q|∑
i

qi

, (5)

The re-ranking of the documents is then computed using these
distances by Formula 3 by setting the weight wi accordingly. Intu-
itively, the distance from the query marker is used as the importance
of the query phrase in the ranking of the documents.

5. EXPERIMENTS
The current research lacks understanding on the end-user ben-

efits of interactive visualization in multi-aspect search scenarios.
The perceived simplicity and overall familiarity of well-studied
conventional search system interfaces – like the current de-facto
search interface with typed query and a ranked result list – have
not been challenged in experiments that measure the quantifiable
benefits of task completion time and effectiveness.

We conducted a controlled laboratory experiment in which the
relevance mapping and re-ranking were compared to a conventional
ranked list visualization in two basic tasks that searchers have to
perform when using an information retrieval system: perception
and retrieval.

The perception task sought understanding on the benefits of the
visualization in perceiving the distribution and density of result-
ing documents with respect to the multi-aspect query phrases. The
retrieval task sought understanding on the benefits of the visual-
ization in re-ranking the results according to a user specified dis-
tribution over the importance of the different query phrases (see
Figures 3b,3c1, and 3c2). The benefits were measured with respect
to task completion time and effectiveness (quality of the perception
or retrieval). The following subsections explain the details of the
experiments.

5.1 Hypotheses
The study tested the following four hypotheses:

• H1: Efficient perception hypothesis: The relevance map al-
lows faster perception of the result set.

• H2: Efficient retrieval hypothesis: The relevance map allows
faster retrieval of relevant information.

• H3: Effective perception hypothesis: The relevance map al-
lows more accurate perception of the result set.

• H4: Effective retrieval hypothesis: The relevance map allows
retrieval of more highly relevant information.

5.2 Experimental Design
The experiment used a 2 × 2 within-subjects design with two

search tasks and two systems. The conditions were counterbal-
anced by varying the order of the systems and tasks.

5.3 Baseline
A baseline system, shown in Figure 3a, was implemented to en-

able comparability and as to ensure that the evaluation revealed the
effects solely on the features enabling relevance mapping and re-
ranking. The baseline used the same data collection as well as the
same document ranking model. All retrieved information in the
baseline system was displayed with a ranked list layout. The base-
line did not feature a relevance map, and the ranking was based on
a single query at a time. The baseline was using the same hard-
ware, i.e. a multi-touch-enabled desktop computer with a physical
keyboard.

5.4 Tasks
The experiment consisted of two tasks, perception and retrieval,

which are explained below and exemplified in Figures 3b,3c1, and
3c2. Both tasks used a common set of four topics, either (1) inter-
action, tabletop, tangible, and prototyping, or (2) surfaces, explo-
ration, visualization, and sound. The two set of topics were formed
by two researchers who were experts on human-computer inter-
action. The same researchers were then asked to assess the task
outcomes of the participants.

5.4.1 Perception Task
The perception task aimed to measure task completion time and

effectiveness, to help understand how a document space is popu-
lated and organized with respect to specific query topics. Partic-
ipants were asked the two following questions: (1) "Out of the 4
topics provided, which 2 topics are related to the highest amount of



Figure 3: In the perception task, participants must identify the two and three keywords out of four that are the most related to
relevant information. In the baseline (a), they must skim through the ranked list of results to infer the most prevalent keywords
from the top articles. Using the relevance map, they must interpret the distribution of document markers. In the retrieval task,
participants must find an article that shows a high relevance to one keyword (say, tabletop), and a lesser relevance with two other
keywords (say, tangible and interaction). Using the baseline (a), they must query the three keywords, then find a fitting article in the
result list. Using the relevance map, they point (by tapping on the touch-enabled monitor) at an area between the three keywords
(c1), somewhere closer to tabletop than tangible or interaction, which triggers a re-ranking of retrieved articles based on the selected
position (c2). The participant should be able to select one of the top articles as a fitting task outcome.

relevant documents?", and (2) "Out of the 4 topics provided, which
3 topics are related to the highest number of relevant documents?".

An example visualization from which the user had to select the
topics is shown in Figure 3b. In that case, we can see that the space
delimited by tabletop, tangible, and interaction is the most densely
populated through sheer amount of document markers, making
them part of the answer. To find the two keywords, they must then
compare pair-wise document density by focusing on the edges be-
tween query phrase markers, with a slight but noticeable lead in
density (encoded as darkness) between tangible and interaction.

5.4.2 Retrieval Task
The retrieval task aimed to measure task completion time and

effectiveness in finding documents with varying multi-dimensional
relevance toward several topics. Participants were given the follow-
ing instruction: "Find one article that is highly relevant to ‘Topic A’
and slightly related to ‘Topic B’ and ‘Topic C’.". The task was then
repeated one more time with a different topic priority: "Find one
paper that is highly relevant to ‘Topic B’ and slightly related to
‘Topic A’ and ‘Topic C’."

An example sequence of a visualization, user pointing to the vi-
sualization to re-rank the document list from which the user had to
select the documents is shown in Figures 3c1 and 3c2.

5.5 Measures
We used two performance measures: task completion time and

effectiveness. Task Completion Time measured the time required to
complete the task. Effectiveness measured the quality of the task
outcome.

5.5.1 Task Completion Time
Task completion time was computed directly as the duration in

seconds from the beginning of the task to the completion of the
task.

5.5.2 Effectiveness
Effectiveness was computed differently for the two tasks and the

corresponding ground truths for the task outcomes were defined
differently.

In the perception task, effectiveness was measured as the accu-
racy of the participants answer. The ground truth was available



from the relevance estimation and was computed as a sum of the
relevance scores associated to each query phrase representing the
topic. The topics were then ordered based on the sum of relevance
scores and the top 2 and top 3 topics corresponding to the task de-
scription were selected as the ground truth to which each answer
was then compared. Accuracy was computed for each answer, re-
sulting in a grade of 1 for a match, 0 for a mismatch, and – in
the case two topics selected out of four – 0.5 for a partial match.
Each participant having returned two answers, effectiveness was
then measured as the mean of both grades.

In the retrieval task, effectiveness was measured as precision on
the documents selected by the participants. All documents chosen
by any of the participants in any of the two system conditions were
pooled. Two experts then assessed the actual relevance of each
document to each topic. The experts being authors of the exper-
iment design and having themselves devised the topics, potential
bias in the assessment was addressed by following a strict double-
blind procedure (i.e. experts had no knowledge of the participant,
the system or concurrent assessment) and balancing the use of each
set of topics across both conditions. The experts assigned for each
document a grade between 0 (non-relevant) and 5 (highly relevant)
to each of the topics, which were then averaged (mean) into a fi-
nal grade. The topic defined as highly relevant was given a dou-
ble coefficient so that the final grade reflected the weighted aspect
of the task. The final grade indicated the expert opinion on how
relevant the document was for the task. The inter-annotator agree-
ment between the experts was measured by using Cohen’s Kappa
for two raters who provided three relevance assessments per doc-
ument. Agreement was found to be substantial (Kappa = 0.684,
Z = 7.04, p < 0.001), indicating that the expert assessments were
consistent.

Additionally, we collected the position in the result list of each
document returned by each participant, to better understand the re-
ranking/scrolling tradeoff.

5.6 Data logging and data collection
For the purpose of the task completion time measurement, we

recorded (1) the task duration from the start button press to the end
button press. For the purpose of the effectiveness measurement,
we recorded (2) bookmarked documents. After completion of both
tasks in both conditions, participants were given a questionnaire
to collect data on their age, gender, academic background and re-
search experience.

We used a document set including all articles available at the
Digital Library of the Association of Computing Machinery (ACM)
as of the end of 2011. The information about each document con-
sists of its title, abstract, author names, publication year, and pub-
lication venue. Articles with missing information in the metadata
were excluded during the indexing phase, resulting in a database
with over 320,000 documents. Both the baseline and the proposed
system used the same document set and the users were presented
with the top 2000 documents.

5.7 Participants
Twenty researchers in computer science (40% females) from two

universities, ranging in age from 21 to 36 years old and from 1
to 8 years in research experience, volunteered to participate in the
experiment. The participants were all compensated with a movie
voucher that they received at the end of the experiment. All partic-
ipants were assigned the same experimental tasks on both systems
with systematic varying order between the systems. In this experi-
ment, informed consent was obtained from all participants.

5.8 Apparatus
Participants performed the experiment on a desktop computer

with a 27" multi-touch-enabled capacitive monitor (Dell XPS27).
The computer was running Microsoft Windows 8 and both systems
– being Web based – were used on a Chrome Web browser version
45.0.2454.85 m. A physical keyboard was provided for text input,
whereas pointing, dragging and scrolling were performed through
touch interaction. The search engine implementing the relevance
estimation method was running on a virtual server and the doc-
ument index was implemented as an in-memory inverted index al-
lowing very fast response times with an average latency of less than
one second.

5.9 Procedure
The tasks were described on individual instruction sheets that

incorporated one of the two sets of keywords, to which we will
refer as the task versions. The duration of the tasks was not con-
strained. To avoid introduction of confounding variables, we coun-
terbalanced the tasks by systematically changing the order of the
systems, the order of the task versions, and which task version was
allocated to each system.

Considering the novelty aspect of the visualization, a training
version of the tasks was devised, allowing participants to use both
system with comparable proficiency. Training tasks had to be done
using each system, right before the main task, using a separate set
of four keywords: creativity, collaboration, children and robotics.
The training started with the participant receiving a tutorial on how
to use the system, then, while performing the training task, she
could ask questions about either the task or the system. As soon
as the training task was completed and the participant had no more
questions, the participants started the actual experiment.

Participants were asked to underline the chosen answers on the
instruction sheet. In the retrieval task, we asked the participants
to bookmark the chosen articles. A Start/Submit button was added
to both systems in the upper right corner. To be able to use each
system, participants had to tap Start when ready to perform each
task and Submit when they had completed it.

6. RESULTS
The results of the experiment regarding performance are shown

in Table 1 and illustrated in Figure 4 with respect to the selected
measures: task completion time and effectiveness, and reported ac-
cording to both tasks, perception and retrieval. The mean position
of selected articles in the result list is also illustrated in Figure 4.
The results are discussed in detail in the following sections.

6.1 Task Completion Time
Significant differences were found between the systems in both

tasks, which are discussed as follows.

6.1.1 Perception Task
The results of the perception task show that participants spent

substantially less time completing the perception task when us-
ing the relevance map than when using the baseline system. The
mean task duration for the relevance map was 84.23 seconds, while
the mean task duration for the baseline system was 177.72 sec-
onds. The differences between the systems were found statistically
significant (Wilcoxon pair-matching ranked-sign test: Z = 3.27;
p < 0.001). In conclusion, the relevance map shows 111% im-
provement, and was therefore more efficient for the perception task,
confirming H1.



Task Completion Time Effectiveness

Baseline (B) Map (M) B vs. M Baseline (B) Map (M) B vs. M

M SD M SD Wilcoxon Test M SD M SD Wilcoxon Test

Perception 177.72 116.20 84.23 39.38 p < 0.001 0.75 0.23 0.89 0.17 p = 0.013
Retrieval 137.53 101.66 80.93 70.65 p < 0.001 0.70 0.13 0.71 0.12 p = 0.95

Table 1: Task completion time and effectiveness results for both tasks. Task completion time is reported as a duration of the task
averaged over participants. Effectiveness in the perception task is reported by mean quality of topics averaged over participants, and
effectiveness in the retrieval task by mean quality of documents averaged over participants. Results showing significant improvement
over the baseline are shown in bold.

Figure 4: Results from the performance measures displayed for both systems with confidence intervals for: (a) task completion time
in the perception task and (b) task completion time in the retrieval task with the mean duration (lower is better), (c) effectiveness in
the perception task with the mean topic quality, and (d) effectiveness in the retrieval task with the mean document quality (higher is
better). (e) Mean position in the result list of selected articles in the retrieval task.

6.1.2 Retrieval Task
In the retrieval task, participants spent substantially less time

completing the task when using the relevance map than when using
the baseline system. The mean task duration for the relevance map
was 80.93 seconds, while the mean task duration for the baseline
system was 137.53 seconds. The differences between the systems
were found to be statistically significant (Wilcoxon pair-matching
ranked-sign test: Z = 3.87; p < 0.001). In conclusion, relevance
map shows 70% improvement and was therefore more efficient for
the retrieval task, confirming H2.

Using the relevance map, participants selected articles close to
the top in the result list, with a mean position of 1.48 (SD = 1.20),
while the mean position of the selected article for the baseline
system was 6.33 (SD = 7.20). The differences between the sys-
tems were found statistically significant (Wilcoxon pair-matching
ranked-sign test: Z = 4.77; p < 0.001).

6.2 Effectiveness

6.2.1 Perception Task
In the perception task, the effectiveness as measured by the accu-

racy of the topics selected by the participants on the relevance map
is 0.89, while accuracy on the baseline system is 0.75. The differ-
ences between the systems were found to be statistically significant
(Wilcoxon pair-matching ranked-sign test: Z = −2.46; p = 0.013).
In conclusion, relevance map was more effective for the perception
task, confirming H3.

6.2.2 Retrieval Task
No statistically significant difference in the relevance of retrieved

documents was found in the retrieval task (Wilcoxon pair-matching
ranked-sign test: Z = −0.07 and p = 0.95). The fourth chart in fig-
ure 4 shows very similar results for both systems. This result fails
to confirm H4, but it shows that the improvement in task comple-
tion time observed in the retrieval task did not impair the quality of
the retrieved documents.

7. DISCUSSION
The results of the experiments show significant improvements

in task completion time in both perception and retrieval, without
compromising effectiveness. These results confirm hypotheses H1,
H2 and H3.

In the perception task, participants were able to use the rele-
vance map visualization to make decisions with greater accuracy,
111% faster. The visualization allowed the participants to under-
stand more accurately the distribution of information with respects
to the multiple aspects of the query.

In the retrieval task, documents fitting complex criteria were re-
trieved 70% faster using re-ranking through interaction with the rel-
evance map. While finding documents with different relevance to
several topics requires users to go through long lists of results and
assess the relevance of individual documents, our proposed method
for re-ranking through pointing at the map successfully narrows
down the top results to documents that fit the criteria.

The quality of the task outcome was the same in both conditions
in the retrieval task, which failed to confirm hypothesis H4. A
possible reason for equal performance is the absence of strict time



constraints for participants to complete the tasks. It is possible that
a constrained time to complete the task would have negatively im-
pacted the quality of the task outcome for the baseline, as the par-
ticipants would not have been able to carefully examine the list to
find a fitting article, but would have been forced to skim, resulting
in possibly lower quality of selected topics and articles.

While our results show substantial improvements over the base-
line, there is a tradeoff between the perceived simplicity of a
result list and the added visual complexity of a relevance map.
Interaction-wise, a result list is explored by scrolling, while a rel-
evance map requires more complex behavior, justifying the use of
a training session and tutorial. In the context of the present exper-
iment, the necessity for a tutorial introduces a risk of influencing
participants towards optimal behaviors that may outperform self-
devised strategies. While our results suggest that the design of such
visual interfaces can make both retrieval and perception faster, sim-
pler interfaces may be more effective when the cost of interactions
is higher, e.g. smaller devices and mobile scenarios.

We see further research directions to be addressed. First, dif-
ferent task complexity could be investigated and open-ended tasks
explored, in which users would have more control over the search
process. Second, more realistic search situations outside of our
present laboratory experiment could be exploited to investigate in-
teraction with relevance mapping and re-ranking functionality in
situations in which users would have the possibility to try their own
areas of interest and determine whether the suggestion effectively
met their preferences and expectations.

8. CONCLUSION
Conventional systems for information retrieval are not designed

to provide important insights of the data, such as relevance distri-
bution of the results with respect to the user’s query phrases. In
this paper, we introduced visual re-ranking, an interactive visual-
ization technique for multi-aspect information retrieval that helps
overcome such limitations. The method proved successful in sub-
stantially improving performance over complex analytical tasks.
Evaluation showed that users are able to make sense of the rele-
vance map and take advantage of the re-ranking interaction to lower
the time required to make analytic decisions or retrieve documents
based on complex criteria. These results suggest that the conven-
tional one-dimensional ranked list of results may not be enough for
complex search-related tasks that go beyond simple fact finding.
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A B S T R A C T

Collaborative and co-located information access is becoming increasingly common. However,
fairly little attention has been devoted to the design of ubiquitous computing approaches for
spontaneous exploration of large information spaces enabling co-located collaboration. We in-
vestigate whether an entity-based user interface provides a solution to support co-located search
on heterogeneous devices. We present the design and implementation of QueryTogether, a multi-
device collaborative search tool through which entities such as people, documents, and keywords
can be used to compose queries that can be shared to a public screen or specific users with easy
touch enabled interaction. We conducted mixed-methods user experiments with twenty seven
participants (nine groups of three people), to compare the collaborative search with
QueryTogether to a baseline adopting established search and collaboration interfaces. Results
show that QueryTogether led to more balanced contribution and search engagement. While the
overall s-recall in search was similar, in the QueryTogether condition participants found most of
the relevant results earlier in the tasks, and for more than half of the queries avoided text entry by
manipulating recommended entities. The video analysis demonstrated a more consistent
common ground through increased attention to the common screen, and more transitions be-
tween collaboration styles. Therefore, this provided a better fit for the spontaneity of ubiquitous
scenarios. QueryTogether and the corresponding study demonstrate the importance of entity
based interfaces to improve collaboration by facilitating balanced participation, flexibility of
collaboration styles and social processing of search entities across conversation and devices. The
findings promote a vision of collaborative search support in spontaneous and ubiquitous multi-
device settings, and better linking of conversation objects to searchable entities.

1. Introduction

The impact of search on our everyday lives is unparalleled. Yet, surprisingly, search is often thought of as a solitary user activity,
focusing on eliciting a user’s information needs and improving search-result relevance. Recently, increasing attention has been
devoted to search as a collaborative activity that is often co-located, spontaneous and initiated informally from a dialogue (Brown,
McGregor, & McMillan, 2015; Morris, Fisher, & Wigdor, 2010a). Users are inspired or informed by others’ searches, and can distribute
search efforts, exploring the information space in parallel. Despite the increasing number of situations in which several co-located
people engage in collaborative search, available devices and public screens are not effectively used for synchronous collaboration.
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Situations addressed by existing collaborative search systems include distributed users on mobile interfaces, or co-located interaction
on tabletops. We wanted to focus on a common ubiquitous computing scenario in which several co-located users spontaneously
engage in collaborative search, using personal devices as well as available large screens or projectors. In particular, we investigate
what user interfaces and search systems facilitate collaboration across such devices.

Several collaborative search systems have been proposed (Table 1), supporting either distributed collaboration (Halvey, Vallet,
Hannah, Feng, & Jose, 2010; Morris & Horvitz, 2007; Paul & Morris, 2009; Wiltse & Nichols, 2009), or co-located search situations
(Amershi & Morris, 2008; Chung, North, Self, Chu, & Quek, 2014; Golovchinsky, Adcock, Pickens, Qvarfordt, & Back, 2008; Jetter,
Gerken, Zöllner, Reiterer, & Milic-Frayling, 2011; Morris, Lombardo, & Wigdor, 2010b; Morris, Paepcke, & Winograd, 2006; Teevan,
Morris, & Azenkot, 2014). Collaborative search systems have targeted different kind of devices and their typical features include
support for result sharing and coordination of work. Moreover, methods and tools supporting these activities continue to be general-
purpose communication systems, such as email or instant-messaging systems (Morris, 2008) or, in co-located situations, face-to-face
communication. Conversely, support for exploratory search in collaborative situations has remained largely unaddressed
(Hearst, 2014). We maintain that the problem of ubiquitous co-located search should be targeted as a new design problem that
considers a range of devices, including smartphones, tablets, laptops, and larger public screens utilized simultaneously in the same
environment. In this context, user interface concepts need to consider the opportunities provided by multitouch interaction in ma-
nipulating information directly as well as constraints, such as the limited possibility of text entry on different devices.

The main research question that we investigate is whether an entity-based user interface (Klouche et al., 2015) provides a solution
to support co-located search on heterogeneous devices. Such interfaces have only been investigated in search systems tailored to
individual users, especially to facilitate exploration on touch devices without a physical keyboard. How they affect collaborative
search is still unknown. Entity search, recently adopted in Web-wide knowledge graphs, is an opportunity to move search from
keyword-based text queries on unstructured data, toward semantic search that recognizes how text refers to different types of things,
such as people, places, organizations, etc. Similarly, a user interface that allows queries and results to be formulated using entities
provides information that can be manipulated in an intuitive way and might be better suited for mediated interaction between
people. Recent studies on collaborative search demonstrate how it is often co-located, spontaneous and initiated informally from a
dialogue (Brown et al., 2015; Morris et al., 2010a), such that search should integrate with the conversational context identifying
“searchable objects.” Ideally, in the future, any entity mentioned in a conversation will be searchable (Andolina et al., 2018; Brown
et al., 2015; Shiga, Joho, Blanco, Trippas, & Sanderson, 2017). While the query-and-response paradigm, with long lists of document-
based results, works well for individual look up search, it falls short in exploratory and mobile scenarios (Klouche et al., 2015). As in
the latter cases, we posit that entity-based interfaces effectively support collaborative search in ubiquitous settings. We start by
analyzing the state of the art of collaborative search situations and tools to understand current trends and needs in collaborative
search and devise general design goals for our system.

We present the design and implementation of QueryTogether (Fig. 1), a collaborative search system designed for co-located
exploratory search in which two or more physically co-located users search together supported by entity-centric recommendations.
QueryTogether was deployed in a multi-device collaborative environment with tablets and large screens, and evaluated in a colla-
borative exploratory search study with nine groups, each consisting of three people. Conventional laptops and large screens, with
more traditional search tools based on queries and lists were used as a baseline for comparison. The study’s goal was to evaluate
QueryTogether and understand how its novel design, including explicit support of exploration through entity-centric re-
commendations, affects collaborative search in terms of exploration support, collaboration, and engagement. The results show that,
relative to the baseline, QueryTogether leads to significantly improved contribution balance and search engagement without com-
promising effectiveness. Interaction analyses also suggest that QueryTogether led to more effective usage of the heterogeneous
devices together with improved support for diverse collaboration styles and common ground establishment.

2. Background

Collaborative search is increasingly documented as an activity that initiates spontaneously as part of co-located social interactions
(Brown et al., 2015; Morris et al., 2010a). Informal opportunistic interactions among colleagues, for example, often happen by chance
in common areas or cafeterias, and they may lead to conversations that end up being critical to a project’s success (Isaacs, Tang, &
Morris, 1996; Kraut & Streeter, 1995). As part of such conversations, people may spontaneously turn to their personal devices to
collaborative search for information (Brown et al., 2015) that may or may not be familiar (Hearst, 2014). However, the systems
designed to support collaborative search, until now, have focused mainly on increasing awareness of search activity and division of
labor across collaborators (Morris & Horvitz, 2007; Zhang et al., 2017), leaving other important aspects of collaborative search less
investigated.

Table 1 summarizes several attempts to create collaborative-search support varying from conventional distributed Web-search
extensions to domain-specific tabletop designs. SearchTogether (Morris & Horvitz, 2007) facilitates remote collaboration by sup-
porting awareness, division of labor, and persistence. ViGOR (Halvey et al., 2010) uses similar principles but in the multimedia
domain. MUSE (Krishnappa, 2005) allows pairs of remote users to search for medical information. CoSense (Paul & Morris, 2009)
supports remote collaborative search by focusing on sense-making and providing several rich, interactive views of users’ search
activities. CollabSearch (Yue, Han, He, & Jiang, 2014) is a Web search system where collaborators can save Web pages or snippets
and make comments. Similarly, Coagmento (Shah, 2010) provides integrated support for communication, note-taking, and the
collection of text snippets or other objects from Webpages. ResultSpace (Capra et al., 2012) provides awareness of the group activity
by displaying query histories. It also supports the rating of query results and includes filtering controls based on ratings from
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individual collaborators. CoSearch (Amershi & Morris, 2008) is designed for enhancing collaborative Web search in a shared-com-
puter setting, by leveraging multiple mice and mobile devices. The design space of using tabletops for collaborative Web search
systems has been explored with several systems: TeamSearch, FourBySix Search, Cambiera, and WeSearch (Morris et al., 2010a;
Morris et al., 2010b).

Two particular aspects remain poorly investigated in related research: support for collaborative exploration (Hearst, 2014), and
the co-located use of heterogeneous devices. First, we review insights originating from earlier research on collaborative searches with
a special focus on support for exploration. Then, we analyze how previous approaches have considered the diversity of devices and
setups. Finally, we introduce the notion of entity to the context of semantic computing and delve into how it can be incorporated into
novel exploratory search systems. We end by summarizing the answers to the research questions posed by this work.

2.1. Collaborative exploratory search

According to a survey on 150 users conducted by Evans and Chi (2010), most people (around 59%) engage in collaborative
searches as part of an exploratory process of searching for information that may or may not be familiar. Exploratory search
(Marchionini, 2006) refers to complex search tasks in which users’ understanding of information needs, and the information available
in the data collection, can evolve during the search session. Traditional search systems tailored for well-defined narrow search tasks
may lack the necessary support for exploratory search where users can sequentially refine the expression(s) of their information needs
and explore alternative search directions. Although, at the individual level, a large body of work targeting exploratory search has
been produced in the last decade, surprisingly, specific features for supporting exploratory search are often been missing from
collaborative search systems.

In the context of individual search, there have been many examples of techniques and systems that support exploratory in-
formation needs. Researchers in the area of semantic web have proposed several strategies to address the need for exploration in
search, mainly relying on different kinds of classifications (see Wilson, Kules, schraefel, & Shneiderman, 2010 for a review). Other
strategies include the use of interactive intent models that enable refining of the current search intent and identifying search di-
rections (Ruotsalo, Jacucci, Myllymäki, & Kaski, 2014). Other approaches mainly focus on supporting exploration at the interface
level, such as TweetBubble (Jain et al., 2015), which extended the Twitter interface to stimulate exploratory browsing of social
media. A novel approach is the one introduced by ExplorationWall (Klouche et al., 2015), a system aimed at supporting exploration at
both the interface and the system level by coupling an entity-centric recommendation engine with a novel visual interface based on
parallel search streams. Unfortunately, these strategies and systems have only targeted single user scenarios.

In collaborative search situations, the main strategy for handling the need for exploration has been to rely on collaboration itself.
Current systems have thus focused on enabling features to improve the collaborative process, such as awareness of other team
members, communication, and division of work. However, specific features for supporting exploratory search, such as those proposed
for individual users, are often missing. Although not specifically designed for exploration, TeamSearch (Morris et al., 2006) and
Facet-Streams (Jetter et al., 2011) may support exploratory information needs, to some extent, by leveraging faceted search
(Yee, Swearingen, Li, & Hearst, 2003). With faceted navigation, users can narrow search results by incrementally applying multiple
filters, called facets (Tunkelang, 2009). Available facets (either existing categories or computed through clustering) provide an
overview of the information space allowing users to choose from a list instead of coming up with a query. The exploration, however,
is limited since faceted search typically relies on Boolean filters to determine a list of equally relevant items that are then sorted
according to an arbitrary criterion (e.g., time, price). Moreover, such a binary approach to relevance creates limited opportunity for
discovery and insights. Our approach obviates this problem by allowing the users to express preferences on entities that they find
useful, presenting results sorted according to relevance estimation, without excluding information based on arbitrary criteria.
Cerchiamo (Golovchinsky et al., 2008) uses a different approach by providing support for exploration in an implicit way, namely
through algorithmic mediation (Pickens, Golovchinsky, Shah, Qvarfordt, & Back, 2008) and by introducing roles. Cerchiamo avoided

Fig. 1. QueryTogether. The system enables multi-device co-located collaboration for search. It explicitly supports exploration by providing entity-
based recommendations to group members. The system supports diverse collaboration styles, ranging from individual work to tight collaboration.
Each group member can search privately and share interesting results or search cues either privately with individual teammates or publicly with the
whole group.
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explicit sharing and focused on ensuring that the search results of individual users would automatically be influenced by the group’s
search process. One limitation to this approach is that users do not have any control on what information is shared. Also, this
approach only supported a form of loosely coupled collaboration, while it lacked support for tightly coupled collaboration. In a
similar way, Querium (Golovchinsky, Dunnigan, & Diriye, 2012) supports exploration through system mediation. However, unlike
Cerchiamo, Querium also provides communication and sharing features to enable more tightly coupled collaboration.

Our system, QueryTogether, is unique insofar as it provides support for exploration at both the interface and the system level. At
the interface level, QueryTogether supports exploration through the novel representation of entities as interactive searchable objects,
whereas at the system level provides smart entity recommendations for directing future searches. In this way, QueryTogether leaves
control to the users who can transition between phases of loosely and tightly coupled collaboration as needed. In QueryTogether, the
feature of entity-centric exploration, which has proved to be effective for individual users (Klouche et al., 2015), is adapted to a
collaborative-search setup.

2.2. Multi-device search

Although collaborative search has mainly been envisioned as taking place around a single shared device (Morris et al., 2010a;
Morris et al., 2010b), recent research has pointed out the importance of enabling users to initiate their searches at any time or place
and with any available device based on how their information needs are triggered (Han, Yue, & He, 2015). A study conducted by
Brown et al. (2015) further showed the importance of supporting mobile collaborative search at any time. Their results revealed how
collaborative mobile-phone search often happens as part of informal conversations, and how searchers manage the participation of
other interlocutors alongside the search itself (Brown et al., 2015).

Some collaborative systems have attempted to support multi-device interaction in search. CoSearch (Amershi & Morris, 2008), for
example, supports co-located collaborative search through a shared display and multiple input devices, such as extra mice or mobile
phones. Mobile phones allow individual searchers to control several functions on the shared display and to download Web pages from
the shared display to their private mobile devices, thus enabling individuals to read the same Web page at their own pace. Although
CoSearch provides users with more control and independence than a traditional shared interface can, the independence provided is
still limited. For example, all collaborators can suggest search terms, but only the “driver” of the shared interface can execute queries.

PlayByPlay, Wiltse and Nichols (2009) supports remote collaborative search between mobile and desktop users in on-the-go
scenarios by using an instant-messaging channel that allows users to send snippets of Web content. An informal study on a simulated
mobile search scenario showed that the slowness of text entry was generally a problem that needed to be addressed. In the present
study, however, we do not focus on remote collaboration but rather on collaborative search situations where users are physically co-
located. O-SNAP, Teevan et al. (2014) proposes a multi-device mobile scenario for co-located restaurant search. The system supports
the switch between individual and group search using phone orientation: vertical orientation was used for individual search, while
landscape orientation was used to enter collaborative mode and have the application state of an individual (including search terms,
result list, and current view) propagated across all other devices in the mode. This approach, however, posed coordination challenges
when multiple users tried to control the screens at once.

In contrast to those systems, QueryTogether enables collaborative search on a wider variety of devices, including tablets, laptops
and large touchscreens. This is achieved through a responsive design featuring a mechanism for typing-free querying via direct
manipulation of search entities, which is particularly suitable for interaction on small-screen devices but also applies well for
searching on larger screens. Unlike systems such as CoSearch, which offer limited features on smaller devices, QueryTogether pro-
vides the same set of features on all available devices. Other systems, such as VisPorter (Chung et al., 2014), support collaboration
and the sharing of resources on a large variety of devices. They do not support collaborative search, but they do promote colla-
borative sense-making. Another difference with respect to other multi-device systems is that QueryTogether allows some devices to
be used in public mode as shared workspaces, and the rest of devices in private mode for which individuals have full control over
what they want to share. In this way, QueryTogether maintains the advantages of both early collaborative search systems im-
plemented on shared tabletops and more recent systems supporting phases of independent search, such as PlayByPlay and O-SNAP.

2.3. Entity-based search interfaces

Traditional methods of information access have used a keyword-based query and a document-based response. The limited and
well-defined scope of this paradigm works well in terms of addressing user intents in familiar search contexts. However, it is in-
efficient for complex tasks and does not allow for the efficient modeling of complex user intents in the information space
(Ruotsalo et al., 2014).

Entity-based systems provide users with named entities (e.g., people, places, topics) to better address specific information needs.
Conventional search engines often use Wikipedia as a comprehensive entity collection, in an entity-recommendation approach, to
answer entity-centric queries. Yet, despite how comprehensive Wikipedia content may seem, most relevant information (e.g., very
recent news events) is usually presented in natural language and not structured and linked according to standards.

Researchers in the fields of semantic computing and information retrieval are investigating new approaches to overcome such
limitations (Balog, Meij, & de Rijke, 2010). In particular, the goal of semantic computing is to understand the naturally expressed
intentions of users, determine the semantics and express them in a machine-processable format. In addition, armed with the ability to
model and express users’ intentions, it models and processes content and information, inferring meaning and therefore its semantics.
In this way, it makes it possible to map the semantics of the user with the semantics of the content, allowing users to share meaning
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(Hasida, 2007).
Recently, Web-scale knowledge graphs demonstrate through recent advances in open-information extraction (OIE) how to

structure and semantically link entities from information extracted from the Web (e.g., Freebase, DBPedia, Google Knowledge Graph,
Knowledge Vault (Dong et al., 2014)). Several exploratory search systems have been developed around such efforts. Some systems
rely mostly on the visualization of the entity graph as provided by the database to provide links to Wikipedia articles
(Nuzzolese et al., 2017). Others use interactive visualization and retrieval algorithms to rank meaningful results (Castano, Ferrara, &
Montanelli, 2014; Marie, Gandon, Ribière, & Rodio, 2013).

In most cases, results are still document based, with an entity-based interactive visualization on the side. Recent entity-based
systems supporting exploratory search use entities both in the results and as a query, with documents considered just another type of
entity (Andolina et al., 2015; Klouche et al., 2015). Such design allows each result to be used as the start of a new search, thereby
respecting the iterative and open-ended nature of exploration. When visualized as interactive objects, entities make for flexible
interactions, for they can be easily moved and organized to reflect the user’s state of knowledge and as a way to input new search
directions. Entity-based systems have been shown to substantially reduce the need for typing, which make them especially useful for
touch devices (Klouche et al., 2015). They have also been shown to foster more active behavior from users in exploratory settings,
with more queries submitted and more relevant information found per unit of time as well as more branching and revisits in the
search trail (Andolina et al., 2015).

3. System design

In this section, we identify design goals and describe how they were implemented in the QueryTogether system. The main theme
we identified is the need to effectively support exploratory search in a collaborative and spontaneous search setting. The challenge is
how to adapt exploratory features developed for single-user scenarios in a collaborative search tool by making sure to provide a good
support for exploration at both the system and the interface level. Another theme that has emerged from studies is that collaborative
search happens in a variety of situations and with different devices. The challenge is designing for a wide range of devices with
different form factors and different input modalities. Finally, it has been noted that co-located collaborative search, although often
preferred to remote collaboration, may perform less effectively (González-Ibáñez, Haseki, & Shah, 2013). In their study, González-
Ibáñez et al. (2013) demonstrated that, for an exploratory search task, remotely located participants were able to explore better than
co-located teams, meaning that more independence led to more diversity in information resources, which helped explore a greater
variety of relevant information. Having more social presence increased interactions among the participants, but these interactions
were often found to be distracting for a time-bound task. The design challenge here is how to incorporate the best of the co-located
and remote approaches by making sure that people can take advantage of the more tightly coupled collaboration typical of co-located
situations but also of the more independent, loosely coupled form of collaboration happening when interacting remotely.

Based on the current trends and envisioned collaborative-search practices, we hypothesized that an effective interface for co-
located, collaborative exploratory search should support entity-centric exploration but also enable the flexible use of devices and
support diverse working styles.

3.1. Design goals

• Entity-centric exploration. The units of search and collaboration can be any information entities – such as documents, keywords,
and authors – that can be shared for collaboration or used as queries to trigger exploration. The design should also provide
different starting points for exploration, including not only entities suggested by peers but also entities suggested by the system.
System suggestions should be provided every time a new query is triggered, so users are always provided with possible directions
for future exploration. In both cases the suggested entities should be encapsulated in interactive search objects that can be directly
used to trigger new queries and explore new directions.

• Flexible use of devices. To study the effect of entity-centric exploration in a scenario that reflects the current trends as closely as
possible, one design goal is to make the system usable from a variety of devices and thus support different modalities (e.g., mouse
and touch) and different platforms. To facilitate interaction on smaller devices (and on touch screens in general), the main
features such as querying and sharing should not necessarily require typing. Enabling typing-free interactions may also prevent
unnecessary overhead when accepting system suggestions and thus lead to less distraction and better exploration.

• Support for diverse working styles. Previous work on co-located collaboration has stressed the importance of supporting a variety of
working styles ranging from individual work to tight collaboration (Scott, Carpendale, & Inkpen, 2004; Tang, Tory, Po, Neumann,
& Carpendale, 2006). It is important to allow for various degrees of coupling as at times, the work is more efficient if it is
performed by an individual or loosely coupled. This is also important due to the fact that in some instances, it might be ap-
propriate to allow for maintaining privacy of the information being manipulated by participants (Stefik et al., 1987). Moreover,
the system should allow for flexible switching between different working styles. Users should have the option to work in-
dependently and to decide if and when to share and whether to share privately or publicly. While this could lead to more effective
collaboration (González-Ibáñez et al., 2013), it could also be beneficial from a privacy perspective, as users decide what to share
without needing to disclose their entire search log.

The practical implementation of the QueryTogether system consists of two parts, the user interface and the search engine, which
are described in detail in the following subsections.
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3.2. User interface design

The workspace is divided into two parts: the query area (Fig. 2a) at the bottom and the results area (Fig. 2b) on top. The side panel
(Fig. 2f) is collapsible and always available on the right edge of the screen. It contains the reading list/share history (Fig. 2g) – where
the user can visualize all saved and shared information in descending chronological order – and the user list (Fig. 2h) – where each
user’s name is displayed as a label along with his or her share status (“public” for shared devices and common work spaces or
“private” for users with individual/private devices) (Fig. 2k).

The system uses and presents all information in the form of entities, i.e. interactive objects that embody snippets of different types
of information. In the current instantiation, entities are of three types: documents, authors, and keywords. Each entity is represented
by an icon, a label, and a relevance gauge and can be dragged across the workspace. This approach allows the user to make intuitive
associations and to use any encountered information as a new starting point for exploration. Additional interactions include: ac-
cessing an entity’s content by tapping its label and saving it by tapping its icon. Saved entities are highlighted and can be found in the
reading list in the side panel.

All search queries consist of an entity or a group of entities of any type (Fig. 2e). Queries are formulated by dragging existing
entities to the query area at the bottom. When entities are brought close enough together, they are considered to belong to the same
group, which is made visible through a visual link. When a specific topic of interest cannot be found among existing entities, double
clicking on the query area will show a textbox that allows the user to create an entity based on a custom expression.

Sharing is performed by dragging an entity to the chosen user. The recipient will instantly receive a new instance of the sent entity
in his or her side panel. If the side panel is closed, a visual notification in the corner informs the user of the number of new entities
received. Next to each user label, a “Message” icon (Fig. 2m) allows the user to send a short message along with an entity.

To facilitate exploration based on saved and shared entities and documents, the reading list/share history can be filtered ac-
cording to a chosen collaborator, simply by tapping his or her name. Filtering based on a collaborator that uses a personal device will
show only entities and documents sent to and received from that user. Filtering based on the moderator, or any collaborator using a
public workspace (e.g., through a shared monitor, large screen or projector) will display the content of the common collection shared
among all users. Filtering based on one’s own name will display only entities that have been saved locally and ignore anything sent or
received remotely.

Fig. 2. The interface is composed of (a) the query area and (b) the results area. Main interface elements include: (c) search streams; (d) three types of
entities: documents (brown icons), authors (red icons), and keywords (blue icons); (e) simple or composed queries; (f) the side panel, which is
composed of (g) the reading list/share history and (h) the user list, with (k) a list of users and (m) a messaging option. The user composes new
queries by dragging entities to the query area. A custom expressions-text input field is created by double clicking/tapping on an empty space in the
query area. Entities can be saved to the reading list by dragging and dropping. The reading list also displays entities sent by collaborators. The user
list shows online collaborators. Entities can be shared by dragging them to the recipient in the user list. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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3.3. A walkthrough example

Max, Anna, and Oscar are three computer science students. They have teamed up to present a common project in the context of a
workshop on the semantic web. They meet to look for ideas as they only have a superficial knowledge of the topic. Max and Oscar
take out their tablets, while Anna takes control of the shared large multi-touch screen, assuming the role of the public user and
moderator of the session.

As they each log on to the collaborative search system, their names stack up in the user list on each device. They agree to start by
exploring the topic of “semantic web” at large, to find inspiration and become more familiar with related subtopics. Anna starts by
tapping somewhere in the query area of the shared screen, which opens a local text box. A soft keyboard pops up, with which she
types “semantic web.” Based on that query, the system returns a variety of related documents and keywords organized in a vertical
stream. They discuss and review the keywords suggested by the search engine that seem to be the most central. They eventually agree
that Oscar will further investigate the topic “ontologies” while Max will explore “web mining.” On the shared screen, Anna drags the
keyword “ontologies” from the result stream to the user label “Oscar” in the user list (Fig. 3a). A new instance of the keyword appears
instantly in Oscar’s side panel with the mention “Shared by Anna (Moderator) at 10:36:17”. Anna then does the same with the
keyword “web mining” to Max. Without having to type anything, Oscar privately drags the freshly received keyword on his device
toward the query area, which returns a new stream of articles and keywords all related to “ontologies” (Fig. 3b). He reads the
abstracts of the retrieved articles and performs a few follow-up searches based on the related keywords. The new result sets appear as
parallel streams on his interface, allowing him to compare their contents. In the same way, Max explores information related to “web
mining.”

As they both encounter interesting documents and keywords, they send them to the large screen by dragging them over to Anna’s
user label. After a little while, they decide to stop collecting new material to discuss the shared content. Anna leads the discussion on
the large screen (Fig. 3c). As they review the outcome of their individual searches, they agree on which documents to keep in the list
and which to dismiss. To remove an entity or a document from the list, they simply drag it out of the side panel. In the end, all three
participants share the same collection of a few highly relevant documents that will make for an excellent basis to start their project.

3.4. The search engine

In order to support the document retrieval and entity oriented coordination, the search engine was designed to support two main
functions: entity ranking and document ranking.

Entity ranking computes a ranking for entities given the composed query. The key idea behind the entity ranking is that the entities
offered to the user by the system are based on centrality estimation given the query. For example, if the user searches for “information
retrieval,” she is expecting back not only entities that occur in the top ranked documents, but also ones that are central for the field of
information retrieval.

Document ranking computes a ranking for the resulting documents given the composed query. Conversely to the entity ranking,
document ranking is based not on centrality but solely on relevance estimation given the query.

We used a document set including more than 50 million scientific documents from the following data sources: the Web of Science,
prepared by Thomson Reuters, Inc.; the Digital Library of the Association of Computing Machinery (ACM); the Digital Library of the
Institute of Electrical and Electronics Engineers (IEEE); and the Digital Library of Springer. Information on each document consisted
of the following: the title, abstract, author names, and publication venue.

3.4.1. Entity ranking
We represent the underlying database as an undirected entity-document graph, where each document, keyword, and author are

Fig. 3. This sequence illustrates the coordination and exploration process between collaborators: a) from the results of a search, User 1 chooses an
entity - in this case a keyword - to send to User 2. User 1 drags the chosen entity to User 2's label in the user list. b) The received entity appears in
User 2's reading list, along with information on the sender and the time it was sent. User 2 can then use it as an exploration trigger to start a new
search stream by dragging the received entity to the query area. c) In the same way, entities can be sent to User 3. In this case, User 3 uses the system
on a common workspace on a large screen and is set as public, so entities on the large screen are shared with all collaborators.
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represented as vertices, and the edges represent their occurrence in the document data.
The centrality ranking is based on the user’s relevance feedback on vertices determined by dragging them into the query area.

Each cluster in a query area represents a separate query that consists of a set of vertices. We use the personalized PageRank method
(Jeh & Widom, 2003) to compute the ranking of the vertices. The set of vertices that the user has chosen to be part of an individual
query form the personalization vector that is set to be the prior for the PageRank computation (Jeh & Widom, 2003). We compute the
steady distribution by using the power iteration method with 50 iterations. The top k=10 nodes from each entity category (keyword,
author) are selected for presentation for the user.

3.4.2. Document ranking
The document ranking is based on a language modelling approach of information retrieval (Zhai & Lafferty, 2004), where a

unigram language model is built for each document, and the maximum likelihood of the document generating the query is used to
compute the ranking. We use Jelinek-Mercer smoothing to avoid zero probabilities in the estimation.

Intuitively, separating the entity ranking and document ranking approaches makes it possible to compute a limited set of entities
that are likely to be the most important in the graph given the user interactions and allows users to target their feedback on a subset of
the most central nodes given the interaction history of the user in any subsequent iteration. At the same time, the document ranking
enables accurate and well-established methodology for ensuring relevance of the documents.

4. User study

4.1. Research questions

To demonstrate that entity-based interfaces on heterogeneous devices improve support for collaborative searches, we conducted a
user study. To investigate the improvement given by QueryTogether relative to the baseline, we considered effectiveness, colla-
boration support, and engagement (see Sections 4.7.1, 4.7.2, 4.7.3):

1. Effectiveness: Does the QueryTogether system improve the search session effectiveness of retrieved information when compared
to the baseline system?

2. Collaboration: Does the QueryTogether system enhance collaboration or lead to more balanced contribution within the group of
participants when compared to the baseline system?

3. Engagement: Does the QueryTogether system lead to more engaging search behavior when compared to the baseline system?

Additionally, we aimed to investigate how and in terms of what aspects the collaboration changes, focusing on the use of
searchable objects/entities, collaboration styles, and heterogeneous devices:

1. Entities as searchable objects: What is the extent of use of entities as searchable objects in conversation or through the use of
QueryTogether?

2. Collaboration styles: Does the collaboration differ in tightly or loosely coupled work styles (Scott et al., 2004; Tang et al., 2006) or
transitions between these?

3. Heterogeneous devices: Are there differences in how participants attend to the different devices?

4.2. Experimental design

The study followed a within-groups design with nine groups and two system conditions. Nine in-person teams of three people
were assigned a collaborative search task. The system conditions were the full QueryTogether and a baseline version of the system
that did not have the design features of QueryTogether. Each group performed two tasks: one with the support of QueryTogether and
one with the baseline. The conditions and tasks were counterbalanced by changing the order in which the two tasks were performed
and the order in which the groups were subjected to each condition.

4.3. Baseline

As the number of factors affecting the design did not allow for baselines where each factor would be studied in isolation, we
designed a baseline system based on the following rationale:

• De-facto practice. As the study did not focus on a single isolated system factor but rather a whole system design, we wanted to
compare QueryTogether with a set of tools representing an authentic de facto work practice. A recent survey study (Morris, 2013)
suggested that despite the increasing availability of tools designed specifically to support collaborative search scenarios, users may
be reluctant to adopt them. The de-facto practice of performing collaborative information seeking and search is based on re-
purposing everyday communication technologies, such as online document sharing combined with conventional information
search systems.

• All other system features being equal. As the study compared a system with the proposed design features, and a setup where the
participants were using de-facto practice, we wanted to ensure that all other system features were as equal as possible. These
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include the database and the indexing and ranking functions of the search engine. In other words, we used the exact same
underlying database, the search engines used the same state-of-the-art ranking function, and we indexed the data using the same
inverted indexing technique. This ensured that none of these would become confounding factors in the study.

• Interface mimicing. We wanted to mimic the interface design of publicly available Web search engines and digital library search
systems with which the participants would be familiar. These interfaces typically display a search box and a list of query results.

The baseline, illustrated in Fig. 4, was implemented based on this rationale. The baseline was a control condition that mimicked
the conventional search interfaces, allowed for isolating confounding factors related to data or search engine functionality, and
enabled the users’ de-facto collaboration practice to be conveyed by combining the baseline system with the tools that the partici-
pants would use in real-life situations.

We selected Google Docs as the information gathering and sharing platform, as this is the most commonly used collaborative
platform available and the participants were likely to be familiar with the platform.

4.4. Procedure

The experiments took place in a dedicated interaction laboratory, shown in Fig. 5. The participants in the group were first
debriefed on the experimental procedure and the purpose of the study. Then, they signed an informed consent form to take part in the
experiment. The participants were also told that they were free to withdraw from the experiment at any moment with no con-
sequence. The experimenter then illustrated the system, the interface functionalities, the devices, and the tools that the participants

Fig. 4. A screenshot of the baseline system. It uses the same underlying dataset and ranking model as the QueryTogether system. The interaction
with the system is limited to typed queries and the result presentation relies on a ranked list. Papers can be bookmarked to build a personal list. Such
a list is hidden by default but can be expanded by clicking on the link “show bookmarked”.

Fig. 5. The experimental setting with the two experimental conditions. In the QueryTogether condition (left), two of the participants were equipped
with tablet computers, and the moderator was equipped with a laptop computer. The QueryTogether was used in all of the computers. In the
baseline condition (right), all the participants used laptop computers. The moderator screen was projected to the large screen in both conditions. The
figures are captured frames from a video recording of an actual experimental session.
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could use. Then, the participants were asked to try out an exemplary task. This ensured that the participants were aware of how to
operate the system and use the tools and devices as intended. Prior to starting the actual session, each group first had to elect a
moderator who would have the responsibility of leading the collaboration and managing the final outcome. After this, the experi-
mented made sure that the participants agreed that the system functioning, the tasks, and the roles of the participants were clear, and
the actual experimental session began.

Two of the participants sat in chairs with an optional table, and the moderator sat at a separate desk. The three participants were
placed in a triangle facing each other at a distance of approximately 2m to make it easy to see each other and communicate. When
using the baseline, all participants used laptop computers. When using the QueryTogether system, two participants used tablets (9”
diagonal screen size), and the moderator used a laptop computer. In both conditions, the moderator’s computer was mirrored onto a
large screen that faced the other two participants.

The participants had 20 min to complete the task with each system. After completing the task, participants were asked to fill out
the User Engagement Scale questionnaire. The entire experimental session lasted about 80 min. Each participant received two movie
tickets as compensation for participating.

4.5. Participants

Altogether, 27 people (8 women) were recruited to take part in the experiments. Participants were recruited from the computer
science department of two Universities, and they all had at least some research experience. The participants were assigned to one of
nine groups of three people each. Participants in the same group knew each other. Recruiting was done via word-of-mouth and
specialized mailing lists. To reduce the effect of social dynamics during group formation, which could distract from the main task
(Tuckman, 1965), and to study a more realistic situation, the recruiting message specified that participants were supposed to know
each other, thus requiring to sign up in groups of three.

The mean age was M = 29.30 (SD = 3.71) and the levels of education were: 26% PhD, 52% master’s degree, 11% bachelor’s
degree, 11% high school. When asked to self-assess their ability to successfully find information using a Web search engine, 63%
chose “average” and 37% chose “expert.”

4.6. Tasks

The task was created to support an exploratory search scenario. To ensure that the participants had at least some research
experience while not being experts on the proposed topics, we used a screening questionnaire. The task was formulated as follows:
Your group has been asked to write a scientific review on topic X. As part of the task, you have to perform a bibliographic search on topic X.
You have 20 min to find at least 20 relevant papers that cover as many subtopics as possible. Two topics were used in the evaluation
sessions: “crowdsourcing” and the “semantic web.”

Participants in the QueryTogether condition collected the relevant papers in the reading list (Fig 2g), while participants in the
baseline condition used a shared Google doc. All the sessions lasted 20 min. Although participants could collect as many relevant
papers as needed, they were instructed to keep only the 20 most relevant papers found and discard those that exceeded that quota.

4.7. Data collection and analysis

The data collected during the study were based on observations, questionnaires, logged data, and interviews. The entire trial was
video-recorded to allow offline analysis. Two researchers reviewed the recordings of the session independently, transcribing the
utterances that took place. The transcriptions were subsequently coded in terms of types of utterances and collaboration strategies.
The same researchers then went through a second cycle of video analysis to quantify the usage of the large public screen.
Transcription and coding were performed using the software ATLAS.ti. Among other things, the software enabled associating
timestamps to different transcriptions and codes.

In order to operationalize the research questions, a set of actionable measures were defined to quantify each of the aspects:
effectiveness, collaboration, and engagement. In particular, we analyzed collaboration based on contribution balance, usage of the
public screen, and the quantity and type of discourse produced while solving the task. Qualitative analysis of the video recordings
were also performed in order to better understand the patterns of collaboration that took place.

4.7.1. Effectiveness
In order to measure the quality of the information retrieved, we quantified the effectiveness of the search session. Since the

baseline returns lists of documents while QueryTogether returns lists of mixed-type entities, we chose to solely measure the quality of
the retrieved documents. Our main effectiveness measure is an adapted version of S-Recall (Zhai, Cohen, & Lafferty, 2003) for the
search task outcome, as the task was to find at least 20 relevant documents that would cover as many subtopics as possible. The
subtopic retrieval measure reflects the goal of exploration, for it measures the coverage of many different subtopics rather than
merely relevance. This means that the usefulness of a document depends on other documents and their topical distribution (as
determined during the search session.)

The original formulation of S-recall reflects the proportion of unique subtopics covered by a ranked list. Such a definition is meant
for single queries and does not fit well the case of search sessions based on multiple iterations of queries. We thus adapted the S-Recall
measure to reflect the proportion of relevant and unique subtopics covered by a set of documents. As an approximation of the
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subtopics covered by a given document, we used the author-defined keywords of that document that were available as metadata in
our dataset. S-Recall was computed over time in order to get a sense of how fast users were able to reach a good coverage of relevant
information across different subtopics.

Additionally, we used more traditional information retrieval metrics such as precision, recall, and F-measure. All the measures
were calculated at the group level to quantify the overall quality of the information retrieved by the group during the search session.
The measures were computed using a pool of documents constructed from the system logs. This ensured that the pool contained all
documents found by any of the groups. Domain experts assessed the relevance of each retrieved document on a binary scale: relevant
or irrelevant. Author-defined keywords for each relevant document were considered relevant subtopics.

4.7.2. Engagement
The degree of user engagement is a strong indicator of search performance (White & Roth, 2009). For example, the extent to

which the user is focused on the task can indicate whether the system is fulfilling its role in supporting search activities (White &
Roth, 2009). To evaluate the engagement, we used the User Engagement Scale (UES) for exploratory search (O’Brien & Toms, 2013).
The UES questionnaire in its original form includes 31 questions in six different dimensions: Aesthetics (AE), Focused Attention (FA),
Felt Involvement (FI), Perceived Usability (PUs), Novelty (NO), and Endurability (EN) aspects of the experience. Here, we use the
revised form of UES comprising 28 questions and four factors. With respect to the original version, while FA, AE, and PUs remained
distinct factors, items from the NO, FI, and EN subscales were joined to form one factor (O’Brien & Toms, 2013). In accordance with
(O’Brien & Toms, 2013), for each question in UES, participants indicated the extent to which they agreed with each statement about
their exploratory search experience on a 7-point Likert scale from strongly disagree (1) to strongly agree (7).

4.7.3. Contribution balance
The balance of contribution between group members gives an indication of the quality of the collaboration in both conditions, as

groups for which all the relevant subtopics were found by only one or two members may be considered to be collaborating less than
those groups in which each member found a similar number of relevant subtopics. Previous studies (Salomon & Globerson, 1989)
revealed that unbalanced contributions lead to a loss of motivation in team members, which further leads to the loss of productivity.
The reasons for this include the several negative social dynamics happening in teams with unbalanced contributions. In such teams,
for example, the less hard-working members may suffer from the free-rider effect, deciding that their efforts are dispensable, whereas
the hardest-working members, who do most of the work for the whole team, may gradually decide to expend less mental effort to
avoid the feeling of being taken advantage of, the so-called sucker effect (Salomon & Globerson, 1989).

We considered the number of unique and relevant subtopics each group member contributed and used the Gini coefficient of
inequality to measure the balance of contribution. This measure is often used to measure inequality of income distribution
(Firebaugh, 1999), but it has also been used to measure participation across group members using an interface (Rogers, kyung Lim,
PhD, & Marshall, 2009). It is a ratio measure that can be used to compare inequality across cases with different overall measures. The
Gini coefficient ranges from 0 (no inequality) to 1 (total inequality). In our case, smaller values of the coefficient would indicate a more
equitable distribution of unique and relevant subtopics.

4.7.4. Public screen usage
The attention to the common public screen was also considered an the indicator of the quality of collaboration. In particular, this

measure reveals how participants took advantage of heterogeneous devices available. Video recordings were analyzed by two in-
dependent researchers who counted the number of glances toward the public screen by those participants using private devices. The
participant acting as moderator was excluded from this calculation as (s)he was working directly on the public screen. One session
from the baseline and one from QueryTogether were randomly selected to be coded by both raters to assess the interrater reliability.
Cohen’s kappa score was substantial (0.72).

4.7.5. Usage of entities in conversation and QueryTogether
The usage of entities in QueryTogether was derived from system logs. To understand the usage of entities in the conversation, the

type of discourse produced while carrying out the task was analyzed. For this purpose, we developed a coding scheme that included
six kinds of communicative acts used during the task: sharing (S), sharing prior knowledge (PKS), clarification questions (CQ), queries
(Q), answers (A), and reports (R). In particular, sharing was further qualified based on the specific entity it regarded (documents: D,
authors: A, or keywords: K). We defined sharing as utterances that contained an entity that could be used as searchable object by
other collaborators. For example, “I think Mechanical Turk is a good keyword” would be coded with S(K), meaning a sharing of a
“keyword” entity. For the S code, we mainly considered the cases in which the entity was mentioned for the first time in the session.
The cases in which the entity was not yet acknowledged by other collaborators but was mentioned for a second time by the same
person were also coded with S. The cases in which it was clear that the sharing derived from prior knowledge were coded with PKS,
for example, “I know Tim Berners-Lee is the father of Internet.”We defined clarification questions as those utterances asking for more
information about an entity, for example, “What's Mechanical Turk?” Queries were defined as generic questions about an entity, such
as, “Did anyone use collaborative computing (a previously shared keyword)?” Answers were defined as replies to clarification
questions or queries. Reports were defined as coordinated utterances reporting actions done with entities, such as, “Don't do col-
laborative computing. I did that already” or “I'm already looking at social computing.” One session from the baseline and one from
the QueryTogether condition were randomly selected to be coded by both raters to assess the inter-rater reliability. Cohen’s kappa
score was substantial (0.77).
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4.7.6. Collaboration styles
The degree to which collaborators work closely together or independently is referred to as tight versus loose coupling (Dewan &

Choudhard, 1991). To understand the styles of collaboration in QueryTogether and the baseline, we measured the intervals of time
spent in tightly coupled collaboration and in loosely coupled collaboration. An interval of time was coded as tightly coupled collaboration
(TC) when group members engaged in intense verbal communication. Conversely, the intervals of time characterized by absence of
communication or one-way communication from one group member to the others were assigned the code referring to loosely coupled
collaboration (LC). One session from the baseline and one from the QueryTogether condition were randomly selected to be coded by
both raters to assess the inter-rater reliability. Cohen’s kappa score was substantial (0.66). The coded transcriptions were also used to
measure the support to flexible coupling by counting the number of transitions between the two modalities.

5. Findings

The findings from our evaluation can be grouped by three themes: effectiveness, user engagement, and collaboration. Qualitative
analyses were also carried out to examine in more detail the patterns of collaboration and interaction that took place.

5.1. Effectiveness

The average number of queries per session was 32.89 (SD = 11.62) for QueryTogether, and 28.89 (SD = 12.70) for the baseline.
Fig. 6 shows the S-recall for both system conditions averaged over groups for both system conditions. The users find approxi-

mately equal subtopic coverage for the search session using both systems. However, the results show how users in the QueryTogether
condition were able to cover a large part of relevant subtopics in the earlier phase of the search session than users in the baseline
condition.

The precision, recall, and f-measure values at group level for QueryTogether were M = 0.45 (SD = 0.20), M = 0.19 (SD = 0.07),
and M = 0.24 (SD = 0.07), respectively, and the same values for the baseline were M = 0.49 (SD = 0.32), M = 0.21 (SD = 0.06),
and M = 0.25 (SD = 0.06), respectively. Paired t-tests showed no significant differences among the two systems in effectiveness.

5.2. User engagement

Table 2 shows the results from the UES questionnaires. A Wilcoxon signed rank test with Holm-Bonferroni correction indicated
that QueryTogether UES scores were statistically significantly higher than the baseline. The results suggest that user engagement was
improved in the QueryTogether condition.

5.3. Contribution balance

The per-group Gini coefficients of the number of unique and relevant subtopics each group member contributed were M = 0.33
(SD = 0.17) for QueryTogether and M = 0.70 (SD = 0.14) for the baseline. A paired t-test shows that the difference is significant (t
(8) = 5.36, p < .01), which indicates that a more balanced participation was observed for QueryTogether than for the baseline
(Fig. 7).

Fig. 6. S-Recall over time (averaged across groups).
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5.4. Interaction analyses

5.4.1. Entity usage
The average number of shared entities was 30.44 (SD = 8.05), 3.22 of which (SD = 2.44) were search cues (keywords or

authors). In the QueryTogether condition, an average of 32.33 search terms were used. In only 47% of the cases (M = 15.22, SD =
8.30) did users rely on the keyboard to generate new query terms. In the remaining 53% of the cases, query terms were generated by
dragging a system or peer suggested entity to the dock. More specifically in 46% of the cases (M= 15.00, SD= 6.84), the used search
terms were suggested by the system, while peer suggestions accounted for 7% of the cases (M = 2.11, SD = 1.83).

Fig. 8 shows how entities were used in the conversation that took place while carrying out the task. While the sharing of entities
was almost the same for QueryTogether and baseline, in the QueryTogether condition, we observed slightly more usage of entities in

Table 2
Results from UES Questionnaire. A Wilcoxon signed rank test with Holm-Bonferroni correction indicated that QueryTogether UES scores were
statistically significantly higher than the baseline.

QueryTogether Baseline Comparison

M SD Mdn M SD Mdn Wilcox. Test

PERCEIVED USABILITY
I felt discouraged while using this system 2.70 1.44 2 4.22 1.80 5
I felt frustrated while using this system 2.89 1.53 2 4.30 1.88 5
I felt annoyed with using this system 2.81 1.61 3 4.07 1.90 5
This search experience did not work out the way I had planned 3.56 1.67 4 4.59 1.60 5 Z = 2.10
I could not do some of the things I needed to do using this system 4.22 1.80 5 4.74 1.65 5 =p 04.
I found this system confusing to use 2.85 1.43 2 3.04 1.74 3
Using this system was mentally taxing 2.70 1.38 2 3.41 2.02 3
This search experience was demanding 3.81 1.30 4 3.93 1.69 4
I felt in control of the searching experience 4.44 1.22 5 3.93 1.38 4
NOVELTY, FELT INVOLVEMENT, ENDURABILITY
I felt interested in my searching tasks 4.89 1.28 5 3.41 1.50 3
The content of this system incited my curiosity 5.22 1.12 5 3.15 1.43 3
My search experience was fun 5.33 1.14 5 2.59 1.22 3
I felt involved in the searching tasks 5.19 1.47 5 3.48 1.72 3 Z = 4.00
My search experience was rewarding 4.44 1.22 4 3.19 1.30 3 =p 0002.
I would recommend this system to my friends and family 4.30 1.32 5 2.37 1.24 2
I was really drawn into my searching tasks 4.22 1.15 4 2.89 1.31 3
I consider my search experience a success 4.19 1.59 5 3.19 1.33 3
Searching using this system was worthwhile 4.85 1.43 5 2.89 1.22 3
AESTHETIC APPEAL
The screen layout of this system appealed to my visual senses 5.63 1.11 6 2.67 1.47 2
The system interface is aesthetically appealing 5.67 1.24 6 2.52 1.31 3 Z = 4.31
The system interface is attractive 5.48 1.22 6 2.15 1.20 2 =p 0001.
I liked the graphics and images used by this system 5.59 1.28 6 2.33 1.30 2
FOCUSED ATTENTION
I was so involved in my searching task that I lost track of time 3.59 1.55 3 2.78 1.48 3
The time I spent searching just slipped away 3.89 1.58 4 2.78 1.60 3 Z = 2.41
I lost myself in this searching experience 3.26 1.53 3 2.37 1.28 2 =p 03.
I blocked out things around me when I was using this system 3.52 1.55 4 2.48 1.53 2
I was absorbed in my searching task 4.11 1.48 4 3.11 1.60 3

Fig. 7. Gini coefficient of the distribution of unique and relevant subtopics found by individual group members within a group.
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the context of sharing prior knowledge, clarification questions, general queries, answers, and reports. The low frequency of the event
S(A) also shows the scarce role played by the entity “author” in the study.

5.4.2. Public screen usage
In QueryTogether participants looked at the large public screen 60 times on average (SD = 18.32), while in the baseline the

number of glances at the public screen was M = 36 (SD = 33.28). An inspection of Fig. 9 shows that the number of glances at the
public screen was generally higher in the QueryTogether condition.

5.4.3. Collaboration styles
The time spent in tightly coupled collaboration was =M 13.29, =SD 5.13 min in QueryTogether, and it was =M 11.49,
=SD 7.18 min at the baseline. The number of transitions between tightly coupled and loosely coupled collaboration was M = 10.11

(SD = 4.78) for QueryTogether and M = 6.33 (SD = 4.72) for the baseline. This result suggests that QueryTogether supported a
more flexible coupling. By inspecting Fig. 10 is it possible to get a qualitative overview of how different styles of collaboration took
place in both conditions.

5.4.4. Rate of verbal communication
The mean number of utterances per minute was calculated by running a matlab script over the timestamped transcriptions. Fig. 11

shows the change over time in the rate of dialogue. The chart shows a similar amount of dialogue production in the first part of the
session between the two conditions, while more dialogue is produced by participants in the QueryTogether condition during the
second part of the session. This is compatible with what is suggested by Fig. 10, which showed that, compared to the baseline, the
second part of the session for QueryTogether was characterized by more tightly coupled collaboration, thus having more intense
verbal communication.

5.4.5. Collaboration and coordination strategies
Fig. 10 provides a general overview of how different styles of collaboration took place in both conditions. In this section we start

from qualitative analyses of video recordings and logs of the sessions to further understand the patterns of collaboration and co-
ordination strategies that emerged during the study. The way the groups initiated and managed their participation was found to vary
across sessions regardless of the condition.

Groups initiated their collaboration, either by working on their own or establishing common ground based on initial searches and
prior knowledge, or by dividing the work among team members. The differences across conditions regard the way in which those
strategies were implemented. For example, while a similar amount of entities were mentioned as part of the collaborative task

Fig. 8. The usage of entities in the conversation that took place while carrying out the task. In the X axis the different kind of communicative acts
coded: S(x) = sharing, x∈ {K = keyword, D = document, A = author}, PKS = prior knowledge sharing, CQ = clarification questions, Q =
queries, A = answers, R = reports. In the Y axis the average frequency of those codes in a session.

Fig. 9. Number of glances at the large public screen.
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(Fig. 8), in QueryTogether, the associated searchable objects were readily available in the system and could be used for search. Ad-
ditionally, QueryTogether afforded strategies not easily implemented with the baseline. Below we use exemplary excerpts of con-
versations as the starting point for discussing those strategies.

In the QueryTogether condition, three groups initiated their collaboration with the labor division, compared to one case of the
baseline. An example of labor division in QueryTogether was where participant P10 suggested to split the search effort and shared
keywords with the other group members to facilitate the process:

Fragment 1 Transcript 1
P10 (Mod): So: let’s share some of the keywords?

(3.9)
P12: I would try with just crowdsourcing in general=
P10 (Mod): =Yes, but I meant, we can combine those keywords (.)

I can take crowdsourcing with social networks, you take crowdsourcing with user studies
P12: Ok
P10 (Mod): So we can explore together
P11: Alright

This fragment exemplifies the importance of the system suggestions in providing directions for exploration. The entity sharing
mechanism also allowed every group member to easily take control over a specific search direction. On the other hand, in the baseline
condition, situations such as these relied mostly on verbal communication, and this caused some difficulties. For example, when
participant P5 suggested to P6 to investigate “reCaptcha”, P6 replied by asking to spell the keyword, which was an operation that took
time and might have been distracting for other group members. In the baseline condition, the only participants able to more effectively
share information were the moderators, as their search process was shown on the large public screen. The interaction, however, was still
limited. As an example, participant P23 pointed at the large screen and asked the moderator to expand a particular abstract. In this
situation, QueryTogether would have allowed the sharing of the actual entity, allowing P23 to take control over the document without
needing to ask the moderator to perform actions on his behalf. Situations like these, seem to confirm the intuition gained from Fig. 9, in
that the public screen could be used more effectively in QueryTogether. This also provides an example of unbalanced contribution in the
traditional collaborative setting, with one person doing most of the work while the others provide guidance.

Fig. 10. The way in which groups collaborated in QueryTogether (QT) and the baseline (BL). Colored intervals (red for QT and blue for BL) indicate
tightly coupled collaboration, in which group members engage in intense verbal communication. Light gray indicates loosely coupled collaboration
where the verbal communication is either absent or one way from one group member to the other. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Utterances per minute (averaged across groups).
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Another interesting example of collaboration that was supported by the searchable objects provided in QueryTogether regards the
common ground establishment (Clark, Brennan, et al., 1991). An example is when P24 shared some prior knowledge and performed a
search cue suggestion.

In this fragment, P24 started a discussion about a relevant keyword in the domain in order to suggest using that keyword for the
search. This resulted in a keyword sharing and a query triggered from the shared keyword. The keyword suggestion was used to
facilitate discussion and establish a common ground among participants. It is also very interesting to note that the entity was actually
sent to P22 by P23 and not by P24. Before P24 could finish his reasoning and share the entity, P23 had already suggested it from the
system and could use it, in this case, for sharing it with P22. This shows the double role of entity recommendation in QueryTogether.
One aspect is that it represents important triggers for discussion. The other aspect is that the system provides searchable objects for
what could likely become a matter of discussion.

However, it is also worth noting that participants were sometimes so involved in their search task that they ignored the suggestion
or delayed its acknowledgement. For example, when participant P01 suggested “Tim Berners-Lee” was the father of Semantic Web
and shared the related entity, other group members initially ignored that suggestion; after about 7 min, P03 finally asked for
clarification on the role of the suggested author, and discussion on the topic got started. This example supports the intuition that
people in the QueryTogether condition were very involved in the search task during the first part of the session. They were often able
to reach a good level of productivity soon without necessarily resorting to tightly coupled collaboration, and they spent more time in
intense discussion only during the second part of the session, after having contributed consistently to the final outcome. Nevertheless,
the example above shows how QueryTogether enabled the flexible change of collaboration style. When entities were not acknowl-
edged soon in the baseline, they would be easily forgotten. In QueryTogether, however, participants could associate the verbal
sharing of an entity with the sharing of the corresponding searchable object. The entity object would then stay visible in the share
history (Fig. 2g). That enabled easy recall, allowing persons who were temporally working in an individual mode to finish their task,
acknowledge the previously shared word, and switch to a tightly coupled collaboration form with other members of the group. The
example above illustrates a peculiar pattern of collaboration of QueryTogether not being easily implemented in the baseline that we
call leave a note. Video analyses show six occurrences of the pattern in QueryTogether, compared to one occurrence in the baseline in
the entire study. This pattern could have partially contributed to the more flexible coupling observed in QueryTogether (cfr
Section 5.4.3).

6. Discussion

The starting point of this research was that co-located collaborative search is increasingly observed in spontaneous situations
(Brown et al., 2015; Morris et al., 2010a), while previous work mostly addressed bespoken arrangements such as tabletops, or
distributed setups with desktop and mobile applications. Moreover, previous research highlighted the need to more explicitly support
exploration in collaborative search situations (Hearst, 2014). The present work investigated whether an entity-based interface that
successfully supports individuals in an exploratory search provides the right basis for designing for co-located collaborative search
across personal devices and public screens. We developed goals for designing such a solution, particularly entity-centric design as
well as support for a diversity of devices and working styles. The resulting system, QueryTogether, provides support for exploration at
both the interface and the system level by combining a novel representation of entities as interactive searchable objects and smart
entity recommendations. A study with 27 participants (nine groups) provided important insights on how our design improved
collaborative search, while also revealing key challenges for future developments of the paradigm.

Contribution balance. Our study showed how our system design affected the way in which co-located groups collaborate in search.
A main finding was the substantial difference between the Gini coefficients between the conditions, suggesting that QueryTogether
led to more balanced participation in terms of contributions to the final outcome when compared with the baseline. A possible
explanation is that engaging in an exploratory search task requires increased user effort as the topic, and, consequently, the key
search terms are unknown at the beginning of the task. Evaluation apprehension, or similar negative social dynamics, may inhibit the
more reticent participants to ask for help. In the baseline condition, many people limited their search to the obvious queries without
being able to refine them. In contrast, in QueryTogether, the participants were able to avoid the typically observed situation in which
one user searches while others watch and provide guidance. The explicit support for exploration, via system or peer suggestion of
entities, always provided participants with possible directions for exploring an unfamiliar topic, thus making them more active. In
particular, participants mostly used entities suggested from the system, whereas peer suggestions were used less. Prior research on

Fragment 2 Transcript 2
P24: Do you know about this

(2.5)
I suppose you have heard about the Mechanical Turk kind of things?

P22 (Mod): How does that work?
((P24 explains))
((P23 pushes the Mechanical Turk keyword to the public display))

P23: I sent it
P22 (Mod): So, alright (.) Mechanical Turk

((P22 drags the shared keyword to the query area and triggers a new query))
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remote collaboration has highlighted how participants often don’t make heavy usage of specific coordination features involving peer
recommendations (Morris & Horvitz, 2007). It is not surprising then that the same applies to co-located situations, where people have
the possibility to coordinate by simply talking to each other. Our findings suggest that supporting system suggestions instead seems to
be a more promising choice for the design of interfaces that foster equitable contributions in co-located collaborative search. Our
study also suggests that the balance of contributions among team members may be associated with user engagement, which was
found to be higher in the QueryTogether condition. This may have contributed to making participants less prone to social loafing,
which is a phenomenon observed in individuals who rely on the group to exert less efforts (Williams & Karau, 1991).

Multi-device collaboration. Our results suggest that our design could be effective in a multi-device setting. In this paper, we envision
a future in which people can start searching together at any time and with any available devices, including smartphones, tablet, and
pervasive public-displays. While a significant portion of searches nowadays are executed on mobile phones, some complex tasks that
require several iterations, such as those involving exploratory search of scientific literature, are still mainly performed on laptops. In
the QueryTogether condition of our study, two of the three participants used tablet devices to perform exploratory search tasks.
Although these kinds of tasks may seem easier on a desktop computer due to the intrinsic limitations of tablets smaller screen sizes
(see Miller, Sumeeth, & Singh, 2011), as our measure of S-recall over time shows, our design allowed participants to be as effective
with tablets as with laptops and more traditional search tools. Moreover, our analyses of effectiveness and verbal activity over time
revealed that participants in the QueryTogether condition found most of the relevant subtopics sooner compared with participants
who used the baseline, thus allowing more time for discussion and the establishment of common ground (Clark et al., 1991; Hertzum,
2008).

Entities as interactive search objects. Visualizing entities as interactive search objects seemed to have played an important role in
supporting collaborative search on touch devices. We observed a reduced need for typing, with 53% of search terms created by
dragging and dropping entities into the query area. Typing on soft keyboards is slower and more tedious than typing on physical ones
(Hartmann, Morris, Benko, & Wilson, 2009; Hinrichs, Hancock, Carpendale, & Collins, 2007). This can negatively affect the efficacy
and user experience of search applications, which are often heavily based on text entry activities. Our results are in line with findings
from prior research (Klouche et al., 2015) indicating that, when given the opportunity, people prefer to directly manipulate search
entities than type search terms on soft keyboards.

Flexible collaboration style. Our qualitative findings revealed some interesting details on how the collaboration took place. The
analysis of the collaboration styles suggests that QueryTogether supported a more flexible coupling (Dewan & Choudhard, 1991),
meaning that the system made it easy to switch between phases of individual work with little coordination, and phases of tightly
coupled collaboration, in which participants engaged in intense verbal communication. Notably, the analyses revealed a peculiar
strategy which seemed to be particularly suited for this kind of flexible collaboration, the possibility to leave a note for when others
had time. The analyses further revealed how, in QueryTogether, most collaboration strategies typical of both conditions, such as, for
example, the labor division and the establishment of common ground, could be more easily supported by the availability of the
entities as searchable objects.

Common ground. Previous research demonstrated the importance of providing common ground in co-located interaction (Jacucci
et al., 2009; Morrison et al., 2009). The higher lookup rate at the shared display suggests that better group awareness might have
been achieved. Group awareness usually has a positive effect on the coordination of actions, anticipation, and assistance provided to
collaborators with their local tasks (Gutwin & Greenberg, 2002). In particular, the higher awareness of publicly shared information
suggests that the system facilitated the creation of a common understanding (Gutwin & Greenberg, 2002). This intuition is also
supported by our results on the verbal usage of entities in QueryTogether, revealing how, in QueryTogether, more time was spent in
creating common ground by sharing prior knowledge on entities, asking clarification questions, explaining, and reporting activities
performed with entities. However, this sometimes led to long discussions that distracted from the main task. This suggests that the
proper facilitation of common ground establishment is a challenge that requires further research.

Other implications of entity-based search. While this work suggests that entity-based search can effectively support collaborative
information exploration, we believe that our findings may have implications for the design of search interfaces supporting a variety of
search tasks beyond exploration. For example, even less explorative tasks include cases in which users search for a known item but do
not recall either the title or any precise element from the content. In such cases, entity-based search may effectively support re-finding
of such items by remembering an adjacent entity (e.g., an author, a similar document, or an imperfectly formulated topic), as making
a query with the adjacent entity could trigger the system to recommend the desired item.

6.1. Open challenges

The work done in designing and studying QueryTogether uncovered some challenges that should be addressed in future research,
which we describe below.

• Supporting more direct access to entities. Our design took a first step towards providing users with searchable objects related to their
conversations. However, many entities related to the conversations were still missing from the proposed recommendations. The
challenge for future research is understanding how entities can be extracted directly from the speech content and converted to
searchable objects. This would require, among other things, the design of smart ways to extract real-time context-aware in-
formation about the conversation (McGregor & Tang, 2017), so that acceptable speech recognition accuracy could be achieved.

• Identifying useful entity types. The current implementation of QueryTogether has arbitrarily fixed entity types (i.e. documents,
authors, and keywords). However, the most appropriate set of entity types depends on the specific scenario supported. In this case,

S. Andolina et al.



the Author type was not considered to be of much use to the participants (see Fig. 8), while some expressed interest in other
possible types like the publication venue, for example. The challenge is understanding which entities to support in different
situations.

• Supporting more naturalistic tasks. Our results reveal key insights and opportunities for how entity-centric exploration can be
leveraged to support collaborative search with heterogeneous devices. While the proposed design proved to be effective on the
task of collaborative literature search, understanding how to support more naturalistic tasks and informal conversations is a
challenge that would require additional research.

• Providing result previews on small devices.Designing an interface for small devices involves making choices on what information to
display, as the limited real estate of the devices’ screen doesn’t allow to show the same amount of information that is typically
shown on interfaces designed for desktop environments. In QueryTogether, the preview of search results of scientific literature
only included titles and authors of documents, leaving out information such as for example publication venue. While the same
information was available in QueryTogether and the baseline, the difference in preview made a difference in how easily people
could visually filter search results based on specific parameters. The challenge is to devise novel visualization strategies that
would be able to fit the most important information with the least space possible, while maintaining legibility and skimmability.

6.2. Limitations

Evaluating collaborative search systems is a challenging task (Soulier, Tamine, Sakai, Azzopardi, & Pickens, 2016). Our study was
a controlled within-groups user study in which the groups employed two system variants. This experimental design allowed for a
direct comparison of the contribution of the various system variants and controlled for individual differences and behavioral patterns,
which have been found to play a role in the perceived usefulness of search and recommender systems (Ekstrand, Harper, Willemsen,
& Konstan, 2014; Hu & Pu, 2010). The advantages of a controlled study, however, come with limitations. The groups performed
simulated work tasks with given topics, which may have affected the naturalness of user behavior. On the other hand, this mitigated
the confounding factors potentially arising from the pre-knowledge of the groups about some given tasks.

The study used a single dataset from a single domain, which may limit the generalizability of our findings for scenarios involving
data from other domains. On the other hand, the dataset was real, consisting of complete data from scientific articles consisting of
over 50 million articles from several sources. This ensured that the coverage of the data was appropriate to support diverse search
behavior and to allow for studying task performance with simulated work tasks.

We found that the QueryTogether system generally improves collaborative search in terms of several measures. However, we
acknowledge that the contribution of the various features of the design were not investigated as independent factors in the present
study. Consequently, our results suggest that multi-device co-located collaborative search can benefit from some or all of the features of
the QueryTogether system. Future research should be aimed at confirming the effects of (1) input (entities vs. typed queries); (2) the
collaboration mode (shared entity space vs. shared document space); and (3) devices (conventional typing devices vs. touch devices).

Finally, the questionnaires and qualitative analysis revealed participants’ behavior, communication strategies, and collaboration
styles that were not captured via the quantitative data-analysis. These analyses were based on qualitative and subjective feedback,
and more research is required to confirm these results. However, despite these limitations, we believe that our quantitative and
qualitative evidence on effectiveness, user engagement, contribution balance, and collaboration and communication styles show
promise and open an interesting frontier for research targeting the improvement of the increasingly important field of collaborative
information access.

7. Conclusions

Search is a social activity that pervades our daily life. The far reaching vision of this research is an environment able to understand
our conversation, identifying key objects being referred to, and turning them into searchable entities. In this vision, search becomes a
task carried out mostly by a system in the background, while users can focus their energy on discovery, sense making and colla-
boration. The assumption is that search is not the ultimate goal, but a mean for users who are engaged in solving complex tasks that
transcend finding the information (Jacucci, 2016). With this work we took a promising first step in this direction. We introduced
QueryTogether, a tool that facilitates collaborative search in spontaneous settings, by leveraging an entity-centric design based on
entities as searchable objects and smart entity recommendations. In QueryTogether, most entities mentioned as part of a conversation
were readily available as search objects that could directly be used in search without resorting to typing. Our system’s novel features
allowed us to obtain an environment effectively supporting the spontaneity of ubiquitous scenarios typical of our vision with the
more effective usage of heterogeneous devices, a more flexible change of working style, and better search engagement. Moreover,
QueryTogether supported effective collaboration through more balanced participation and by creating opportunities for common
ground establishment. While there are still many open challenges regarding support for multi-device search in ubiquitous settings,
our work highlights the benefit of interfaces based on entity-centric exploration and uncovers design opportunities for future de-
velopments of the approach.
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ABSTRACT
Collaborative idea generation leverages social interactions
and knowledge sharing to spark diverse associations and pro-
duce creative ideas. Information exploration systems expand
the current context by suggesting novel but related concepts.
In this paper we introduce InspirationWall, an unobtrusive
display that leverages speech recognition and information ex-
ploration to enhance an ongoing idea generation session with
automatically retrieved concepts that relate to the conversa-
tion. We evaluated the system in six idea generation sessions
of 20 minutes with small groups of two people. Prelimi-
nary results suggest that InspirationWall contrasts the decay
of idea productivity over time and can thus represent an ef-
fective way to enhance idea generation activities.
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INTRODUCTION
Collecting and navigating through information is an impor-
tant phase in creative processes [13], which fosters associa-
tive and inspirational learning [2]. Previous work that sought
to support for example brainstorming referred to the semantic
network structure of human memory, where concepts feature
as nodes with associative links [15]. In brainstorming, one
cognitive operation to generate ideas is to retrieve concepts
from associative memory. Expanding the current context of
topics has been investigated through topic suggestion algo-
rithms designed to generate candidate topics that are novel
but related to the current context [9]. As brainstorming is
often a collaborative practice, recent creativity systems sup-
port groups. Groups generally perform better than individuals
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Figure 1. InspirationWall is an unobtrusive display supporting idea gen-
eration by leveraging speech recognition and automatic information ex-
ploration. It monitors users’ discussion and automatically suggests key-
words to support their idea generation.

in a variety of tasks [6]. Group brainstorming can be effec-
tive in generating creative ideas as suggested by cognitive ap-
proaches [3], and technology may help minimizing the effect
of negative social processes [5]. A beneficial feature in group
brainstorming is the ability to detect the context and content
of the brainstorming through utterances of participants. Idea-
Expander [14] is a tool to support group brainstorming by
intelligently selecting pictorial stimuli based on the group’s
conversation on a chat. The pictures generally enhanced per-
formance as measured by both originality and diversity of
ideas [15]. Less investigated are face to face systems in group
sessions that suggest keywords instead of pictures. Systems
suggesting keywords and topics have recently been applied
successfully to improve exploratory search processes [1, 10].
Such systems predict the current intent model of the user in
the exploration and suggest possible explorations. These ap-
proaches have also been found useful in avoiding keyword
input by selecting and manipulating suggested keywords by
touch [8]. The present work investigate further alternative in-
put modalities such as speech to text that permit the system to
run in the background without interrupting the creative pro-
cess but providing a continuous resource.
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Figure 2. Left: Two participants in a brainstorming session. Right: A screen capture from the InspirationWall interface.

SYSTEM DESIGN
InspirationWall is a non-intrusive source of diverse ideas
(Figure 1). It was designed as a low-key visual aid, as to
not interfere with the user’s idea generation process. In-
spirationWall continuously monitors the discussions through
a conference microphone and the input to the system is
recorded from users natural interaction via speech recogni-
tion. Speech recognition is performed in real-time using
Googles implementation of the HTML5 Web Speech API
[16].

Recognized expressions are processed by an entity-based
keyword suggestion system that returns related keywords by
discovering associated and novel information related to the
input [11]. Returned keywords are then displayed as slowly
crossing the screen from top to bottom as to allow a progres-
sive refreshing of displayed keywords. The graphical inter-
face of Inspiration Wall is minimal: it runs fullscreen with
a black background. Keywords are displayed in white. Ev-
ery two seconds providing the keyword buffer is not empty
a new keyword appears at the top of the screen at a random
horizontal position and falls slowly towards the bottom of the
screen.

Keyword Suggestion System
As the set of potential keywords matching any part of users’
discussion is likely to be much higher than what can be pre-
sented for the user, and the discussion can contain mislead-
ing cues due to the natural dialogues that the system listens,
we use a centrality-based ranking of the keywords in a large
knowledge-graph.

Intuitively, this approach allows the system to suggest central
keywords that are related to the user input via the knowledge-
graph rather than only suggesting keywords directly match-
ing to the input. This can help discovering keywords that
are highly relevant for the input, but at the same time cen-
tral to the overall discussion [12]. The knowledge-graph G
is undirected and labeled and consists of a disjoint union set
of keywords and documents (called nodes n ∈ G) and the
set of edges between the documents and the keywords. Each
keyword in the graph is connected to a document it describes.

For example, an article about ”relevance feedback for infor-
mation retrieval” could be described with a set of keywords,
such as ”information retrieval”, ”relevance feedback”, ”im-
plicit feedback”, ”web search”, and so on. In addition, we
index the text of the articles that is used to retrieve an initially
relevant set of documents from which the knowledge-graph
is constructed.

The user’s query consists of one or more words detected via
the speech recognition system. A set of keywords detected
are called preference keywords q ∈ G in the graph, where
|q| = 1 and qj denotes the preference for keyword j. In our
case no weighting is conducted for the keywords so the pref-
erence is uniformly distributed over for the given keywords
in q.

We use the personalized PageRank method [7] to compute the
ranking of the nodes given the q. It can be then formalized as
follows. Let an individual node be denoted as n, and by I(n)
and O(n) denote the set of in-neighbors and out-neighbors of
n in G respectively. Let A be the matrix corresponding to the
graph G, where

Aij =
1

|Oij ∪ Iij |
if the node i links to the node j or vice versa, and Aij = 0
otherwise. For a given q, the personalized PageRank equation
can be written as

v = (1− c)Av + cq,

where c = 0.15 is the teleportation rate. The solution v is
a steady-state distribution of random surfers, where a surfer
teleports at each step to a node n with probability c · q(n),
or moves to a random neighbor otherwise. We compute the
steady distribution by using the power iteration method with
100 iterations.

The weights of the v are directly used in ranking the key-
words. As the size of our knowledge-graph is hundreds of
millions of nodes, the computation is not possible on-line for
the complete graph. To make the PageRank computation fea-
sible with an acceptable latency, we approximate the set of
nodes to be included in the initial graph by using a language
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Figure 3. Accumulation of ideas per condition (BL = Baseline; IW = InspirationWall) in the different sessions S1,...,S6. On the Y-axis is the cumulative
number of ideas, and on the X-axis is the time from the beginning of the session (minutes).

model approach of information retrieval [17] and select 3000
documents and the corresponding entities to be cumulatively
added in the knowledge-graph at each iteration.

EVALUATION
We designed an experiment to evaluate the effect of the sys-
tem on the idea generation process. The goal of the exper-
iment was (1.) to understand if and how InspirationWall
helped small groups generating more ideas, and (2.) to assess
the overall effectiveness of the system as a creativity support
tool using standard metrics.

Participants
The evaluation was conducted in groups of two persons (Fig-
ure 2). We recruited twelve participants (six pairs) with expe-
rience in idea generation activities from the computer science
departments of two universities. Three of the participants
were females and the mean age was M = 28.33, SD = 3.98.
To simulate more natural discussions and brainstorming ac-
tivity, we ensured that participants in the same pair knew each
other. Participants were non-native English speakers from
different countries and cultures (Iran, Canada, Spain, Nepal,
Italy, Turkey, Sri Lanka, Rwanda, Kenya) with a similar level
of proficiency in oral English. Their levels of education were:
25% PhD, 67% Master, 8% Bachelor. Participants received
two movie tickets as a compensation for their participation.

Tasks
We used a within-group design, where groups were asked to
perform two tasks: one with the support of InspirationWall
and one without external support. We counterbalanced by
changing the order in which the two tasks were performed
and the order in which the groups were subjected to each con-
dition.

The task was created to support an idea generation scenario
and formulated as follows: Imagine you have to come up
with novel student projects on topic X. Please generate as
many ideas as possible for new technologies, interaction tech-
niques, methodologies, application scenarios, and so on, that

might be used as more specific topics of the projects on
topic X. Two topics were used in the evaluation sessions: (1.)
Robotics, and (2.) Wearable computing.

Metrics and Results
Quantity of Ideas
Since we were interested to check whether our application
influenced the number of ideas generated, we have looked
to the cumulative number of ideas considering time and ses-
sion (Table 1). In total, the six groups have produced 107
(M = 30.57, SD = 12.24) ideas without external support
and 136 (M = 38.86, SD = 14.99) using InspirationWall.
In Figure 3, it is shown the accumulation of ideas per con-
dition in the sessions, considering intervals of 4 minutes. In
addition, video recordings obtained from the camera placed
between the participants and the InspirationWall display al-
lowed us to count the occurrences of participants looking at
the screen (results shown in Figure 4). It is interesting to ob-
serve that the three groups (S1, S3 and S6) that have looked
at the display the most, improved their performance with re-
spect to the baseline condition, presenting a higher number of
generated ideas and a more constant productivity.

Creativity Support Index
To measure the performance of our system in terms of cre-
ativity support, we involved participants in the assessment of
the Creativity Support Index (CSI) [4].
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Figure 4. Number of occurrences of participants looking at the screen in
sessions S1,...,S6.
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Table 1. Accumulation of ideas per condition (BL = Baseline; IW = In-
spirationWall) at time T = 4, 8, 12, 16, 20 in sessions S1,...,S6. For each
point in time, p-values from paired t-tests are also shown.

T S1 S2 S3 S4 S5 S6 M (SD) p

4
BL 2 12 11 3 3 3 5.67 (4.55)

1
IW 5 7 15 2 2 3 5.67 (4.97)

8
BL 3 22 13 6 4 6 9.00 (7.27)

0.61
IW 9 15 23 5 5 5 10.33 (7.34)

12
BL 8 30 18 7 6 9 13.00 (9.38)

0.73
IW 11 21 30 6 7 9 14.00 (9.51)

16
BL 10 34 24 10 8 11 16.17 (10.48)

0.23
IW 14 33 36 8 9 14 19.00 (12.30)

20
BL 10 38 28 11 8 12 17.83 (12.24)

0.17
IW 17 36 46 10 9 18 22.67 (15.00)

This index is computed from two sets of six questions and
each question related with a factor. The six factors that com-
pose the CSI are: Collaboration, Enjoyment, Exploration,
Expression, Expressiveness, Immersion and Results Worth
Effort. Each pair of questions are weighted based in pair
wise comparisons of the factors made by each participant.
The result of the CSI was M = 53.36, SD = 13.35. The
most important factors for the participants were Expressive-
ness (M = 3.58, SD = 1.24) and Exploration (M = 3.83,
SD = 0.94).

DISCUSSION AND CONCLUSIONS
Creative ideas are often triggered by unexpected associations.
InspirationWall offers a quiet additional source of informa-
tion to fuel the activity of collaborative idea generation. This
paper presents the implementation and a preliminary evalu-
ation of such a system. Participants were asked to gener-
ate ideas but not explicitly to use or interact with the system
which was simply provided as is. Our study shows that par-
ticipants that used InspirationWall more – as indicated by the
count and duration of gazing occurrences obtained through
video analysis – tended to generate more ideas in total and
over time. Those results suggest that InspirationWall con-
trasts the decay of idea productivity over time typical of tra-
ditional idea generation sessions. Although the CSI does not
show a high value, it is still above the median value of the
scale, with the most important factors for the participants be-
ing Expressiveness and Exploration. Such results confirms
the effectiveness of automatic information exploration and
keyword suggestion on idea generation, opening a variety of
directions for future work, including for example application
to other datasets, and allowing richer interactions with the
system through touch. The novel approach on idea genera-
tion support described in this paper, the simple design of our
prototype and the positive results of this preliminary study are
the contributions of our work to the future of digital tools for
creativity support.
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ABSTRACT
Conversations among people involve solving disputes, build-
ing common ground, and reinforce mutual beliefs and assump-
tions. Conversations often require external information that
can support these human activities. In this paper, we study
how a spoken conversation can be supported by a proactive
search agent that listens to the conversation, detects entities
mentioned in the conversation, and proactively retrieves and
presents information related to the conversation. A total of 24
participants (12 pairs) were involved in informal conversations,
using either the proactive search agent or a control condition
that did not support conversational analysis or proactive infor-
mation retrieval. Data comprising transcripts, interaction logs,
questionnaires, and interviews indicated that the proactive
search agent effectively augmented the conversations, affected
the conversations’ topical structure, and reduced the need for
explicit search activity. The findings also revealed key chal-
lenges in the design of proactive search systems that assist
people in natural conversations.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
Spoken conversation support; proactive search; voice
interfaces; background speech.

INTRODUCTION
Casual collaborative tasks, such as travel planning or select-
ing a movie to watch create decision-making processes to
solve disputes, build common ground, and reinforce mutual
beliefs and assumptions based on people’s preferences and
prior knowledge. This process is conducted in a conversational
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Figure 1. An illustration of the proactive search from spoken conversa-
tions. 1) The system listens to a natural spoken conversation between
the participants; 2) information needs arise during the conversation; 3)
the system is able to proactively retrieve useful information to support
the conversation; 4) information needs are satisfied seamlessly and the
conversation can continue smoothly.

exchange between two or more people, and a spoken form
is often used to enable such an exchange. The key technolo-
gies assisting individuals in the decision-making processes
are information retrieval and recommender systems, as well
as question answering and summarization techniques [2, 34].
These systems can provide people with additional information
to support their decisions and guide them to information that
is important in the decision-making process.

Today, the availability of a wide array of personal devices has
made search and recommendation possible in a variety of ca-
sual situations, including everyday conversations [9]. The abil-
ity to quickly conduct searches when co-located with others–a
collaborative search–is believed to account for more than 60%
of mobile searches [9, 45]. Often, however, search systems
are not tailored to support the conversational process as such,
but require explicit commands, preferences input, queries, and
human attentional resources to guide the process [33]. As
a consequence, the systems may disrupt social interactions
rather than supporting them [1, 30, 32].

Proactive searches can leverage information from peoples’
contexts to retrieve information in an easily accessible and
non-intrusive manner [36]. Despite the current limitations



of automatic speech recognition, recent research on voice-
based interaction [9, 27] has shown that relevant contextual
information can be extracted even from a partial recognition.

These findings suggest that there are opportunities for scenar-
ios in which a search is proactively performed in the back-
ground by using naturally occurring spoken conversational
contexts between individuals while the individuals stay fo-
cused on their conversations and pay attention to their personal
devices only when they need additional information. As op-
posed to previous approaches, which have mainly focused on
supporting creativity [40], using voice or conversation record-
ings as research tools to uncover what users are doing with
their mobile devices [27], or understanding information needs
in conversations as parts of search tasks [41], we aim to go a
step further by investigating how to proactively retrieve infor-
mation from the Web to augment conversations (Figure 1).

In detail, we aim to investigate how a proactive search agent
can support natural spoken conversations between people by
augmenting the conversations with additional information.
More specifically, we investigate the following research ques-
tions:

RQ1 Does a proactive search system with spoken input from
a natural conversation influence the conversation?

RQ2 Does a proactive search system with spoken input from
a natural conversation affect the consumption of Web re-
sources during conversations?

RQ3 Does a proactive search system with spoken input from
a natural conversation affect participants’ subjective experi-
ences?

To investigate our research questions, we designed SearchBot,
an agent system that listens to a conversation, detects entities
mentioned in the conversation, and proactively retrieves and
presents information related to the conversation. We used
SearchBot in a study with 24 participants (12 pairs) engag-
ing in informal discussions on building travel or movie lists.
Our findings suggest that SearchBot can effectively augment
the conversations by enriching them with entities and docu-
ments shown on the screen and allowing people to consult the
same number of Web resources as they would with traditional
explicit searches. Subjective data from interviews and ques-
tionnaires suggest that proactive search support was generally
found to be useful but also revealed key challenges for the
design of proactive search systems assisting people in natural
spoken conversation.

BACKGROUND
Information retrieval has traditionally relied on the query-
response paradigm, with the user expressing information needs
as explicit queries and the search engine responding with
information items estimated to fulfill the user’s information
needs. Despite its practical success in Web search engines,
the interactions between the user and the search engine may
be laborious, as the broader search context, the user’s exact
search intent, and evolving information needs can be difficult
to capture without explicit user involvement [48].

Proactive search refers to an information retrieval setting
where the search system tries to automatically or proactively
anticipate the user’s upcoming queries and information needs
[12, 16, 25]. An early attempt to build a proactive search sys-
tem is the Remembrance Agent [35], which indexes a user’s
personal data such as emails and written notes. The system
runs continuously in the background and displays a list of
document summaries related to the current document being
read or written. Letizia [24] is another early system that pro-
vides proactive recommendations during Web browsing using
a set of heuristic rules. Another example of using search his-
tory is proposed in [42], where patterns repeated over time
are extracted and used to proactively recommend resources
to the user at specific times of the day. Recent work has also
deployed computer vision to automatically detect broader user
context and infer the user’s work tasks for which supporting
information is retrieved proactively [46, 47]. An interesting ap-
plication for proactive search that comes close to our approach
utilizes the subtitles of TV broadcasts being viewed by the
user as context for predicting potential information needs [20].

Commercially deployed examples include Google Now and
Microsoft Cortana, which run on users’ smartphones and pro-
vide resources based on the current context. In particular,
Google Now tries to model not only short-term search intents
but long-term interests and habits based on several months of
search log data [18].

A related research area is search personalization, where the
search engine tries to discern individuals’ unique search goals
[43, 44]. Typical techniques include anticipating users’ needs
by taking into account their search histories [3], pre-search
context information [23], social networks [11], and interac-
tion behaviors [19, 37]. Researchers have also used previous
search queries by the same user as context [10] and considered
various kinds of relationships between the subsequent queries
as features, such as reformulating the query or narrowing the
search scope [49].

Supporting Conversations
Conversational systems have been studied from various angles,
often referred to as situated interaction [8, 13]. Challenges of
situated interactions include, for example, modeling initiatives
in interaction, contextual interpretation, grounding, and turn-
taking.

Related work has also investigated various kinds of visualiza-
tions to support conversations. ConversationCluster [7] uses
visualizations to highlight salient moments in live conversa-
tion while archiving a meeting. Similarly, Second Messenger
[14] uses a speech-recognition engine as an input method and
shows filtered keywords from the group’s conversation on
an interactive display with the goal of increasing the visibil-
ity of diverse viewpoints. Other work [15] shows individual
speaker-participation rates on a shared display to influence
group behavior during a conversation.

Another main stream of research on conversation support sys-
tems has focused on creative design discussions. Schiavo at
al. [39] introduced a system that monitors group members’
non-verbal behaviors and promotes balanced participation,



giving the participants targeted directives through peripheral
displays. InspirationWall leverages speech recognition and
information exploration to augment a creative conversation
with keywords that relate to the speech stream [4]. Similarly,
IdeaWall [40] provides visual stimuli to the participants of a
brainstorming session to facilitate the creative process. Crowd-
board augments brainstorming conversations with real-time
creative input from online crowds [6].

In this work, we aim to support a wider range of informal
everyday conversations by augmenting them with information
retrieved proactively by a search agent that listens to conversa-
tions.

Using Background Speech for Interaction
Speech-based interaction has been thoroughly studied in the lit-
erature. However, the interest in speech-based systems seems
to have risen again in recent years, probably due to the recent
advances in automatic speech recognition [31]. In particular, a
large body of work focuses on a dialogic mode of interaction
[28] where users communicate with the system using natural
language. Commercially available examples include Apple’s
Siri, Microsoft’s Cortana, and Google Now.

Less investigated is the use of background speech for inter-
action. One example is Ambient Spotlight [21], which uses
speech recognition during meetings to search for desktop doc-
uments and puts them in a folder associated with the calendar
entry related to that meeting. Other systems use background
speech to retrieve words and other kinds of visual stimuli
to support a creative conversation [4, 40]. As opposed to
those systems, which are designed to support creative conver-
sations where even misrecognitions and random results may
lead to useful stimuli [22], we investigate how to support more
generic conversations by proactively retrieving richer sources
of information, such as documents, from the Web.

An important study related to our work is that of McGregor
and Tang [26]. The aim of their study was to understand how
well a speech-based agent could detect useful actions during
formal meetings. Although the study used a simulated system
to create a best-case scenario, results showed that extracted
action items failed to fit with the meeting or gave an incorrect
summary of what was being discussed or what the participants
intended. A different approach was that of McMillan et al.
[27]. Their study suggested that a continuous speech stream,
rather than containing directly actionable items, can be used
to identify users’ next actions such as searches. This result
inspired our research, as it means that regardless of the limita-
tion of current automatic speech recognition technology, many
useful words that would likely be used for a search could still
be recognized. In this study, we aim to understand whether
performing those searches proactively during conversations
could effectively enrich those conversations.

THE PROACTIVE SEARCH SYSTEM
We designed the SearchBot system to monitor a conversation
and provide continuous recommendations of related docu-
ments and entities in a non-intrusive way. Below, we describe

the system’s main components: spoken conversation analy-
sis, user interface design, and recommendation and retrieval
methodology.

Spoken Conversation Analysis
SearchBot listens to conversations through a microphone.
Speech recognition is performed by using Google’s imple-
mentation of the HTML5 Web Speech API1. The speech API
takes an audio recording as an input and outputs a transcript
in natural language. The speech recognizer is continuously
listening to the conversation. The voice activity is automati-
cally detected based on the audio input, and the system starts
building a sentence from the input. After the activity stops, the
system returns the recognized sentence. As soon as the system
recognizes and returns the sentence transcript, it triggers the
entity detection and recommendation component.

Entity Detection and Recommendation
Each transcription is processed by Google’s Cloud Natural
Language API2, which is used to extract recognized entities
from the transcripts. The API returns entities along with the
information about their named entity types. For example,
people, locations, and organizations are separately typed.

In order to recommend new entities based on the detected
entities, we model them using a vector space model [38]. To
recommend new entities, we train an entity embedding model
using Word2Vec [29] on a complete English Wikipedia. The
detected entities from the present transcript are each repre-
sented as a vector in the embedding space. The embedding
model is used by first combining the vectors of the words
in the recognized entities and then retrieving new entities
by ranking other entities using their cosine similarity in the
embedding space. Altogether, four highest-ranking entities
are retrieved in response to each transcript (Figure 2c2). For
example, for the input “Bordeaux”, “France”, and “wines”,
the system computes a cosine distance for an input vector
“Bordeaux” + “France” + “wines” and retrieves the entities
“Bandol,” “sauternes,” “wines,” and “Marseille,” which have
the smallest cosine distance to that vector.

Document Retrieval
Related documents are retrieved via Google Custom Search
by combining entities recognized in the present transcript to a
query. Entities of type “location” or “person” are prioritized
to improve the relevance of the shown results. If an entity of
such type is identified, a separate query is generated using
that named entity, and the other entities are combined to that
query. Altogether, four search results are retrieved in response
to each transcript (Figure 2c1).

More specifically, anytime the recognizer detects pauses, si-
lence, or non-speech audio, a new sentence is returned. From
the sentence, a set of entities is extracted, and a type is de-
termined for each entity. If some of those entities are named
entities, in our case of type “location” or “person,” they are
stored in a separate named entity query vector. All the entities
are also used to form another general query vector. The final

1https://w3c.github.io/speech-api/speechapi.html
2https://cloud.google.com/natural-language/



Figure 2. The user interface of the SearchBot system. The system monitors a conversation and provides continuous recommendations of related docu-
ments and entities in a non-intrusive way. a) Stream of recognized entities; b) timescale with timecodes; c1) recommended documents; c2) recommended
entities.

set of search results shown to the user is then computed as the
union of the highest ranked results in response to both query
vectors. In case none of the entities are of type location or
person, only the latter vector is used for retrieval.

An example of a sentence, extracted entities and their types,
and the query vectors is given below:

SENTENCE: Bordeaux is famous for its
wines.
ENTITIES: Bordeaux (type location),
wines (type consumer good)
NAMED ENTITY QUERY VECTOR: Bordeaux
GENERAL QUERY VECTOR: Bordeaux + wines

User Interface Design
The user interface operated on a regular Web browser. It con-
sists of a timeline that displays a stream of recognized entities
in the lower part of the window (Figure 2a), a timescale with
timecodes displayed in the center (Figure 2b), and successive
sets of four retrieved documents (Figure 2c1) and four recom-
mended entities in the upper part of the window (Figure 2c2).
A new set extends the timeline every time a new transcription
is available.

The user can interact with the system in multiple ways. Click-
ing on recognized or recommended entities triggers a search
and opens the most relevant article in a new tab. Clicking
on a document will open its content in a new tab. Users can

also move back and forth in the timeline by clicking on and
dragging the central portion of the window.

An example of system screen captures during a spoken conver-
sation in which participants were having a natural conversation
about movies is shown in Figure 3.

USER STUDY
A controlled laboratory experiment was designed to answer
the research questions. SearchBot was originally conceived
to support informal conversations, ideally occurring in any
place. However, arranging the test in a natural environment
(e.g., a cafeteria) would have subjected the system to a number
of uncontrollable factors (e.g., ambient noise and incidental
conversations) that could have influenced the system’s perfor-
mance and participants’ experience. Since we did not know
whether the items proposed by SearchBot could effectively
feed a conversation, we chose to limit potential confounding
factors by keeping the test in a controlled setting.

Experimental design
The experiment followed a within-subjects design with one
independent variable being the system in use. Informal con-
versations on building travel or movie lists were supported
either by SearchBot or by a traditional search engine used as
the control. The order of presentation of systems and topics of
discussion were counterbalanced across participants.



Figure 3. Two example screen captures of the system in a session where the participants were having a natural conversation about movies. The
corresponding transcripts of the spoken conversations are shown below the screen captures. The system is recognizing and recommending entities and
matching documents based on the conversational input.

Materials
We asked participants to complete three questionnaires. The
first questionnaire was meant to collect background informa-
tion (first and last name, age, provenance, education) and
expertise in the field of HCI and previous experience with
conversational agents. We also asked participants to assess the
quality of the entities displayed by the system. More specifi-
cally, after they had used the experimental system, they were
shown a list of the 100 suggested entities most frequently
displayed during the conversation. For each word, we asked
them to indicate if the word was pertinent to the conversa-
tion (namely, relevant) and if it was effectively mentioned in
the conversation (namely, mentioned). A third questionnaire
aimed at investigating their experience with the system in use.
More specifically, we devised the questionnaire ad hoc, and
it consisted of 12 items, exploring the impression that the
system affected the conversation (items 1-4), the quality of
the experience with the system (items 5-8), and the perceived
quality of the entities shown (items 9-12). Participants had
to indicate their level of agreement with each item on a 5-
point Likert scale. For items 9-12, the option “not applicable”
was also available. We asked participants in the experimental
condition to complete all three questionnaires, and we asked
participants in the control condition to complete only the third
one. Finally, we devised a semi-structured interview to capture
participants’ direct comments and impressions of the system.
More specifically, during the interview, we asked them to re-
port their overall impressions of the system and the entities
displayed. Furthermore, they had to comment on whether they
had the impression that the system affected the conversation
and whether they got interesting information. After the second
session, we asked them to compare their experiences with both
systems.

Equipment
For the present experiment, each participant used a MacBook
Pro 15” laptop connected to a Samson Meteor microphone.
The experimental session was video-recorded using a Pana-
sonic camcorder. Additionally, the screen recording was taken
using Screencast-O-Matic software, which also recorded par-
ticipants’ faces with the webcam embedded in the laptop.

Setting
The experiment took place in the laboratory. We set up the
room to resemble a comfortable and informal environment,
where participants could feel at ease. They sat at a desk in
front of each other. Each participant had a laptop in front

Figure 4. Experimental setup. Participants were sitting around a table,
and a laptop was placed in front of each participant. The laptops were
displaying the SearchBot interface. Microphones were placed on the
table to record the conversation.



of him/her. The laptop allowed them to easily maintain eye
contact with their conversation partners and quickly glance at
the screen (Figure 4).

Procedure
The experimental procedure consisted of two main phases,
each corresponding to the system in use. On the day of the test,
participants were first welcomed by the experimenter, who
introduced them to the experiment’s main goals and overall
procedure. After that, participants signed the informed consent.
Phase 1 started with a training session on how to use the
system; when everything was clear, the experimental session
began. During the experiment, the experimenter simply asked
participants to talk with their partners for 20 minutes. The
experimenter then left the room to allow participants to talk
freely. He followed the experimental session through a video
connection and was reachable in case participants needed
assistance. The task assigned was not meant to generate a
specific outcome; rather, it was intended to provide only a
general shape to the conversation. More specifically, we asked
participants to share their experiences regarding the movies
or travels (depending on the experimental condition) that had
impressed them and to get inspirations from their partners’
words. We did not force the participants to use the system, but
we allowed them to freely utilize or ignore recommendations
according to their needs. After 20 minutes, the experimenter
returned to the laboratory and asked participants to complete
the online questionnaire about the quality of the entities shown.
Next, the experimenter accompanied one participant out of the
room to complete the post-experience questionnaire while the
other participant remained in the laboratory and completed
the semi-structured interview. After they both finished, they
swapped places. Phase 2 unfolded exactly as Phase 1 did, with
the only exception being the system in use. We used the same
instructions in both experimental conditions. In both cases,
we left participants free to use or ignore the system according
to their needs.

Control system
We used Google Custom Search to create a custom search
engine that would mimic the behavior of the APIs used in the
experimental condition, while maintaining interaction and the
look and feel typical of traditional search engines (Figure 5).

Datasets
To provide more relevant results for our tasks, we set Google
Custom Search so that it would emphasize selected websites
regarding movies or travels, as well as Wikipedia. We ap-
plied the same setting to both experimental conditions, and we
restricted the search engine to specified domains3.

3We used the following domains in the movie task:
www.hollywoodreporter.com, www.imdb.com, www.themoviedb.org,
and www.rottentomatoes.com. We used the following domains in
the travel task: www.wikitravel.org, www.travelandleisure.com,
www.worldtravelguide.net, and www.tripexpert.com. In addition, we
used the English Wikipedia for both tasks.

Figure 5. The instance of Google Custom Search used as a control.

Participants
A total of 24 participants (12 female) took part in the present
study. The participants’ mean age was 27 years (SD = 3.87).
Of the participants, 12 were undergraduate students, five were
doctoral students, three were research assistants, three were
post-doc researchers, and one was a nurse. Overall, 11 partici-
pants reported having previous experience with conversational
agents, and all of them reported rare usage of them. They
received two movie tickets as compensation for participating
in the experiment.

Measures
In order to assess the the proactive search agent’ effect on the
conversation, we used objective and subjective measures.

Influence of information shown on the conversation. To under-
stand whether the information the proactive search agent pre-
sented on the screen influenced the conversation, we counted
the entities extracted from the items shown on the screen that
were mentioned in the 60 seconds following their first appear-
ance on the screen. To control for possible cases in which
displayed entities were mentioned by chance, we performed
the same calculation in the control condition. In this case, the
proactive search interface was running in the background, and
results were not shown to the participants. To perform this
analysis, we used a script on system logs and transcripts of the
conversations obtained through a professional service.

Consumption of web resources. The number of pages opened
by participants during the conversation served as a proxy for
the consumption of Web resources. More specifically, the
research prototype logged the pages accessed in the experi-
mental condition, and for the control condition, the pages were
traced through the navigation history of the Web browser used.



Perceived quality of the recommended items. We showed
participants the list of the 100 recommended entities and the
list of the 100 Web documents that the system displayed most
frequently, and we asked them to mark the items that they
considered pertinent and relevant to the conversation. We
considered this measure a proxy for the perceived quality of
the items the system suggested.

Preferred items with the proactive search agent. In the ex-
perimental condition, we logged the item types (i.e., Web
documents, recommended entities, and recognized entities)
that the system displayed and that the user clicked on to seek
more information.

Subjective experience. We investigated participants’ subjec-
tive experience with the system using a questionnaire and a
semi-structured interview. We devised the questionnaire ad
hoc, and it explored aspects related to the participants’ im-
pressions that the system had affected the conversation, the
quality of the experience of use, and the overall relevance of
the items displayed. The average score for each dimension
was computed and then compared between the two groups.
Concerning interviews, we transcribed participants’ answers
and ran a thematic analysis of those answers. We reviewed
transcripts, identified recurring themes, and organized them
into a codebook. We then applied the codes to the corpus of
data [17].

FINDINGS

Influence of the information shown on the conversation
A Wilcoxon Signed-Ranks Test indicated that the entities ex-
tracted from the items shown on the screen were effectively
mentioned in the conversation. More specifically, the num-
ber of extracted entities that participants mentioned in their
conversations was significantly higher in the experimental con-
dition (in which the items were actually shown) than in the
control (in which the system was running in the background):
z = 2.33, p = .02 (exp. M = 7.46, SD = 4.90, Mdn = 6.00;
con. M = 4.37, SD = 2.20, Mdn = 4.50). This finding indi-
cates that the references to the entities shown on the screen in
the experimental condition were not due to chance (Figure 6).

Figure 6. Number of entities that were mentioned within 60 seconds of
when they were shown on the screen.

Consumption of Web resources
The consumption of Web resources, measured as the average
number of Webpages opened, was also compared between the
two conditions using a Wilcoxon test. The analysis did not
highlight a statistical significant difference: z = .4, p = .68
(exp. M = 11.75, SD = 10.01, Mdn = 11; con. M = 12.58,
SD = 9.81, Mdn = 9.5). This finding suggests that the system
in use did not alter participants’ search behavior.

Perceived quality of the recommended items
31.58% (M = 31.58, SD = 14.70) of the selected recom-
mended entities were rated as relevant in the experimental
condition, and the portion of the selected recommended docu-
ments rated as relevant was 17.38% (M = 17.38, SD = 10.95).

Preferred items with the proactive search agent
Figure 7 shows how participants clicked on the various types of
items in the experimental condition. A non-parametric Fried-
man test among the various types of items clicked rendered a
Chi-square value of 18.1, which was statistically significant
(p< .001). Wilcoxon Signed-Ranks Tests with Bonferroni cor-
rection indicated that participants clicked on items represent-
ing Web documents significantly more than either suggested
entities (p < .01) or recognized entities (p < .01), but there
was no difference between the number of clicks on suggested
entities and recognized entities (p = .17).

Questionnaires
We computed the average score for each dimension that the
questionnaire assessed and compared the experimental and
control conditions using a Wilcoxon test (Table 1). The anal-
ysis showed that participants had the impression that their
conversations were affected to a greater extent by the system
in the experimental condition than in the control condition:
z= 2.32, p= .02 (exp. M = 3.62, SD= .64, Mdn= 3.75; con.
M = 3.15, SD = .86, Mdn = 3.00). Similarly, the reported
quality of the experience of use was more positive for the ex-
perimental condition (M = 3.55, SD = .75, Mdn = 3.50) than
for the control condition (M = 3.14, SD = .76, Mdn = 3.37),
z = 2.01, p = .03. No difference emerged between the condi-
tions regarding the perceived relevance of the entities shown
z = .59, p = .55 (exp. M = 3.5, SD = .57, Mdn = 3.62; con.
M = 3.4, SD = .51, Mdn = 3.5).

Figure 7. The types of items participants clicked on in the experimental
condition. The y-axis is the number of clicks per session.



Table 1. Questionnaires
SearchBot Control Comparison

M SD Mdn M SD Mdn Wilc. Test

Influence on the conversation
1. The system can give the conversation new directions 3.88 0.74 4.00 3.00 1.06 3.00
2. The system provides little support for enriching the conversation 2.88 1.19 3.00 3.08 1.21 3.00 zzz === 222...333222
3. The system has the potential to influence what people are about to say 3.88 0.80 4.00 3.13 1.08 4.00 ppp === ...000222
4. The system had almost no effect on the conversation 2.38 0.88 2.00 2.46 1.14 2.00

Quality of the experience
5. The system was frustrating 2.25 0.90 2.00 2.46 1.10 2.00
6. Using the system was fun 3.67 0.87 4.00 2.88 0.85 3.00 zzz === 222...000111
7. Using the system was effortful 2.79 1.10 3.00 2.79 1.14 3.00 ppp === ...000333
8. Using the system was pleasant 3.58 1.02 4.00 2.96 0.81 3.00

Relevance of the items shown
9. The items shown were overall interesting in the conversation 3.67 1.01 4.00 3.38 1.01 4.00
10. The items shown were not relevant to the conversation 2.33 0.70 2.00 2.25 0.68 2.00 z = .59
11. The items shown were overall pertinent to the conversation 3.61 0.72 4.00 3.48 0.73 4.00 p = .55
12. The items shown were redundant 2.92 0.78 3.00 2.96 0.95 3.00

Interviews
Overall, SearchBot was well-received by participants, with
the majority of users reporting a positive experience (N = 16):

“It was fun. . . . It’s different from everything I’ve tried before”
(P7A). As interviews indicated, participants preferred Search-
Bot over the control condition (N = 14) because it allowed
participants to maintain eye contact during conversation and
provided users with information effortlessly:

I think the [experimental] system is much more useful
and easier because with the [control] system, you have to
make a decision–“Ok, I need to google something”–and
here [experimental system], it’s just a big flow, and you
need to watch if something comes up. If nothing comes
up, you just ignore it (P4B).

The first one [experimental] helped you to keep the eye
contact. . . . You don’t need to concentrate. . . it gives you
ideas sometimes before they come to your mind (P5A).

I think this one [experimental] was better. . . . It was more
useful. It didn’t get me frustrated with wrong information,
and even if it displayed the kind of stuff that were not
relevant, it didn’t bother my eyes. [When something
relevant was shown, I thought] this is relevant to our
discussion; let’s click it. So it was better than the other
one (P8B).

However, some users (N = 7) did not convey a clear preference
between the two systems although they remarked that they
were different. They highlighted that the control system was
more convenient to use when they explicitly wanted to look up
some specific pieces of information but that using SearchBot
was easier because it required no input from the participants:

The [experimental] one is easier because you don’t have
to do anything; you just say the names, and you got the
links. But again, the [control] one was nice because you
could use it to Google (P10B).

A smaller proportion of participants (N = 3) expressed a pref-
erence for the control system because it made them feel in
control:

[With] the [control] system, [it] was a better experience
maybe because I’m used to using a search engine in my
daily life all the time during a conversation (P12A).

Notably, the majority of the participants (N = 15) did have
the feeling that SearchBot affected the conversation either by
offering the chance to deepen the current topic (N = 8) or by
inspiring new points to discuss (N = 7).

It [the experimental system] gave us new information. . . .
Like, we were unsure where the Red Square was, if it was
Moscow or St. Petersburg, and we found that out (P7B).

It [the experimental system] supported the conversation
as it went. For example, we were talking about Mongolia,
and I think it suggested Genghis Khan, and of course
Genghis Khan is part of Mongolia (P10A).

We didn’t know what to talk about next, and I looked at
the [experimental] system, and it said, “Berlin,” so I was
interested in that place, so I asked her if she had been
there before, so it changed the direction (P3B).

However, seven users did not have the impression that the
experimental system was a support for the conversation, either
because they felt proficient with the topic (“I don’t have that
much the impression of that [. . . ] it was a topic in which
I didn’t really need help [. . . ] the topic was quite familiar,
especially since we talked about places I have been” (P6A))
or because they could not find the entities suggested by the
system in a timely manner (“Not much, to be honest . . . but I
was able to see the potential of it . . . because it didn’t catch
up with what we were talking about” (P12A))

The majority of the participants (N = 14) did not find the
information provided unique because they said they could
have found the same data using the search engines they usu-
ally employ: “I don’t think so because I could have Googled
everything it was showing” (P1B). Nevertheless, nine partici-
pants thought that the entities the system displayed were not
obvious:



I think the [experimental] system gave me a lot of unex-
pected results. So, without the system, I would not search
for those keywords (P3B).

SearchBot supported a better understanding of the conversa-
tions’ topics, according to 16 users: “’Cause I can quickly
check something. When we were not sure what the real an-
swer was, we could just click and check” (P3A). However,
six participants did not have the same impression because of
their prior knowledge of the conversation’s topic: “Maybe not
because the topic was so easy, you don’t need help with this
topic because you know it” (P5B).

The entities displayed by the system were generally considered
either relevant or useful (N = 14):

We talked about the recent Star Wars movie, and the
system displayed links to the relevant pages. We were
discussing some details, and we were able to check them
from the pages that were proposed (P8A).

They [the recommendations] were pretty good . . . When
you say something, you have four to five different choices,
and I think they were pretty accurate. Sometimes even you
say something not so important, you would find some-
thing important. For example, we talked about cheap,
how cheap is gonna be, and instantly the system gave us,
like, cheap flights (P7A).

When it was relevant, it was really useful because you just
click on it and then find more information, for example
the year [of the movie] or something like that (P9A).

However, three users found the entities not relevant for the con-
versation and thus distracting: “Something totally not relevant
appeared, which made me less concentrated on the conver-
sation” (P9B). Two participants commented that the search
based on the combination of two entities didn’t work for them:

“I was talking about how to go to Bordeaux by train, so it was
[the system suggested] train and Bordeaux separately, but it
would be much more useful if it was like ‘train to Bordeaux’”
(P6A). Three participants complained that the entities were
displayed too late with respect to the stream of conversation:

“Maybe it showed it [the entities] a little bit afterward ... but it
was interesting information” (P7B). Finally, only one partici-
pant reported that the entities were useless to the conversation.

DISCUSSION
Information spaces grow in size and richness, and users in-
creasingly prefer information to be delivered to them proac-
tively as a part of secondary tasks supporting their primary
tasks. Consequently, conventional search interfaces fall short
in allowing users to concentrate on their primary tasks, and
supporting information access by anticipating users’ needs has
become a major bottleneck in many complex tasks.

We studied how proactive searches conducted by using input
directly from natural conversations between individuals can
support the conversations. We designed the SearchBot system
and used it in an experiment to study the influence, the number
of consumed resources, and the effect on the user experience
of a proactive search interface in supporting conversations.

Answers to the Research Questions
Here we reflect on the research questions that we defined
earlier.

RQ1: Does proactive search with spoken input from natural
conversation influence the conversation? Yes. Figure 6 shows
how participants in the experimental condition frequently re-
ferred to the entities and documents shown on the screen
during their conversations. The comparison with the control
condition, in particular, demonstrated that these references
were not due to chance. This result indicates that not only
did the proactive search system retrieve useful information,
but the displayed information influenced the conversation, as
questionnaires and interviews further confirmed.

RQ2: Does proactive search with spoken input from natural
conversation affect the consumption of Web resources during
conversations? No. There was no significant difference in the
number of Web resources consulted between the experimental
and control systems. This result suggests that participants
retrieved the same number of useful resources supporting the
conversation in both experimental conditions. However, while
in one case the resources were automatically retrieved by
the proactive search agent, in the other case, explicit query
formulation and refinement was needed.

RQ3: Does proactive search with spoken input from natural
conversation affect participants’ subjective experience? Yes.
In general, the reported quality of the experience of using the
system was more positive for the experimental condition, as
it allowed participants to keep eye contact with each other,
enabling more fluent conversation. Participants reported that
SearchBot allowed them to check facts and build common
ground without needing to exert much mental effort. Further-
more, the system was able to expand the conversation in new
directions. However, the added value of the proactive search
experience seemed to come with the cost of feeling less in
control of the search process. All in all, the participants were
more satisfied with the SearchBot system.

Design Implications
In this section, we start from the lessons we learned in our
study and discuss design implications to help set the stage for
future developments of proactive search interfaces for conver-
sation support.

Relevance of recommendations in conversation support.
Our study proved that errors in recognition and the conse-
quent display of non-relevant results do not necessarily pre-
vent a proactive search system from effectively supporting a
conversation. Most participants were able to easily ignore non-
relevant recommendations while benefiting from the relevant
ones. However, while users can easily skim through a screen
full of non-relevant results to identify a single piece of relevant
information, it is important that at least that single piece of
relevant information is there when needed. When this didn’t
happen, participants experienced distraction, frustration, and
loss of trust in the system. Some heuristics may be required
to improve the relevance of displayed results. In our case, we
mostly used queries involving all the entities contained in a
recognized sentence. However, this did not always produce the



desired results. Therefore, we used knowledge gained from
pilot experiments to prioritize locations and people as the enti-
ties particularly relevant to our tasks. When such entities were
detected, we used them in single-entity queries and showed
the results on top of the list. This generally improved the
system’s capability to support the conversations, but it came
at the cost of showing fewer recommendations deriving from
combined entities. Deciding how to combine search terms
and if and how to prioritize special terms is a key aspect to
be considered when designing systems for proactive search
support in conversations.

Types and number of recommended items. Our findings sug-
gest that with SearchBot, around one third of recommended
entities and around 17% of recommended documents were
relevant to the conversation. Nevertheless, our findings also
show that the most used items were Web documents. While in
this initial investigation we chose to display the same number
of recommended entities and documents, our findings suggest
that future implementations should carefully consider how
to allocate the screen’s real estate for various kinds of items
according to the type of discussion to be supported. In our
study, participants did not use recommended entities much.
They used them mostly to expand the conversation with new
ideas. While this result confirms past research on creative
conversations [4], it also highlights the fact that various item
types are needed in conversations that are not merely creative,
such as those explored in our study. Our findings suggest
that richer sources of information, such as Web documents,
should be given more importance in those cases, as they allow
participants to check facts and build a common understanding
on the topic of discussion.

Combining proactive and explicit searches. Our study sug-
gests that proactive searches performed automatically by the
system by using content extracted from spoken conversation
allowed users to more easily maintain eye contact and stay
focused on the conversation, as the interviews indicated. Most
people preferred the proactive search approach to the explicit
search one, but this preference came at the cost of losing
control over the system. As the two approaches showed com-
plementary strengths, next developments should consider inte-
grating both modes of operations in the same interface.

Limitations and Future Work
While our work shows that proactive search support in conver-
sation is already possible and provides several advantages over
relying on traditional explicit search, it also has some limita-
tions. Even if the system was devised to support informal and
casual conversation, we chose to test it in a controlled setting.
While this arrangement allowed us to control for confounding
factors, it also limited our findings’ ecological validity. Further
research is needed to understand how proactive search support
can affect conversation in more natural settings. Also, in this
work, we designed a prototype with a limited set of features.
The prototype served as a research tool to study the potential
of proactive searches from natural spoken input to support
conversations. This strategy allowed us to better understand
the different features’ roles. However, to understand the real
potential of proactive search support in conversations, future

implementations should consider integrating more sophisti-
cated features, such as interactions with the system to build
and maintain intent models [5, 37] and using topic modeling to
extract relevant context and improve the relevance of retrieved
results.

CONCLUSION
The approach to proactive search used in this work utilizes the
subtle human feedback signals observed directly from natural
conversations, as opposed to previous work, which has mainly
relied on conventional user input, such as issued queries or vis-
ited documents. We investigated how a proactive search agent
that uses vocal conversational input could support informal
conversations on travel or movie lists. We designed SearchBot,
a proactive search agent that listens to conversations, detects
entities mentioned in the conversations, and proactively re-
trieves and presents information related to the conversations.
We used SearchBot in a comparative study with 12 pairs of
participants. Our findings showed that information retrieved
proactively by an agent listening to the conversation had the
potential to effectively support the conversation with facts and
ideas without causing much interruption to the conversation’s
flow but at the cost of participants feeling less in control of the
search process. Findings also show that the proactive search
approach retrieved the same number of useful resources sup-
porting the conversation but without the participants needing
to formulate explicit queries. Notably, this study allowed us to
explore the design space of proactive search support in conver-
sations, providing key design implications for the paradigm’s
future developments.
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Proactive recommendation systems aim to support users in their everyday digital life by automatically
retrieving information that can be useful for the task at hand. However, fairly little attention has been
devoted to the design of proactive recommendation approaches for everyday digital tasks enabling retrieval of
actionable entities across application boundaries. We present the design and implementation of an entity-
centric proactive recommendation system that makes recommendations by capturing user’s digital context.
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Fig. 1. An example graphic design task for a manuscript. The system continuously extracts information from
the user’s screen (e.g., entities EEG, STIM, ET, Adobe Illustrator, ...), discovers the user’s evolving intent, and
proactively provides real-time entity recommendations (e.g., the related manuscript, other related vector
graphic files, or co-authors to contact and seek feedbacks on the figure) that could help with the task.
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1 INTRODUCTION

Information retrieval (IR) is an important activity that pervades our everyday digital life. Whether
we plan a vacation, write an essay, or engage in an online discussion with friends, we often need
to retrieve additional information to support our tasks. However, information retrieval systems
are not tailored to support peoples’ digital tasks as such, but require explicit commands, input of
preferences and queries, and human attention to guide the process, which take users’ focus and
effort away from the primary tasks. Furthermore, traditional systems do not typically address the
problem of users not knowing what they do not know [48].
Proactive recommendation systems can address these challenges by continuously watching a

person’s context and presenting information that may be useful without requiring any action on
the part of the user [43]. Available systems have been used to automatically retrieve potentially
useful resources in a variety of situations, ranging from watching news [23] to writing documents
[30, 42] and emails [15], or arranging meetings [60]. These systems have focused largely on the
problem of providing relevant recommendations and have all been successful to some extent. Yet,
relevance is only a partial measure of success: the recommended resources have a concrete impact
on people’s tasks only when they are used.

Understanding to what extent proactive recommendations may be relevant and useful in everyday
digital tasks is a problem that has been less explored. There are three main challenges that have
made it difficult to design a recommendation system that could provide value to users in a variety
of real world everyday digital tasks and could thus be used to more rigorously study the relevance
and usefulness of proactive recommendations:

• Limited access to entities. Everyday digital tasks require users to perform actions on several
kinds of information entities [48], such as contacting people, opening applications, and so
on, but current proactive recommendation systems typically are able to recommend only
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documents or keywords, which expose less affordances to the users, therefore providing
them with less practical value.

• Incomplete access to task context. Everyday digital tasks often require access to information
that is fragmented across several applications and services [5], but current proactive rec-
ommendation systems typically only have access to partial data which is only obtainable
through predefined applications or services.

• Handling interactivity of tasks.Complex search tasks are highly interactive [26, 36], but current
proactive recommendation systems typically do not included much support for interactivity
[7, 31, 33, 42, 60]. Including features for interactive relevance feedback [46] could improve
the overall quality of recommendations [44, 46], but people may not always be willing to
provide explicit relevance assessments [18, 58] if the mechanism is too orthogonal to their
current task. The challenge is finding efficient ways to combine implicit and explicit feedback,
providing users with the right affordances for giving explicit feedback when needed.

Entity-centric modeling approaches can extract meaning from the user activity and can thus
be used to provide users with more meaningful and diverse recommendations. Recent studies
also suggest they foster interactivity and exploration in complex search tasks [1, 2, 29]. However,
many modeling approaches (e.g. [32, 40]) are based on logs of interaction events, e.g. the use of
a file, the browsing of a web page, or the execution of an application, which have limited access
to entities apart from file’s metadata. Content-based approaches such as those that leverage the
written content of documents [15, 30, 31] are better suitable to entity extraction as they are based on
richer data. However, they have typically relied on simple term extraction, leaving the opportunity
to use richer sources of context unexplored. Furthermore, current content-based approaches have
often been tailored to specific applications, such as for example browsers, mail clients, or word
processing software, and although they had the potential to be extended, new wrappers needed to
be written to analyze context from other applications.

We propose a novel approach for proactive recommendations during everyday digital tasks that
overcomes the limitations of existing research by being entity-centric, interactive, and application
independent. The solution we employ uses digital activity monitoring capable of extracting the
texts shown on people’s computer screens across application boundaries. We use this rich source
of context to extract entities such as documents, applications, people, and topics during human-
computer interaction. We implement a semi-supervised intent learning algorithm to learn the
user interest over all entities, proactively, by monitoring user digital activity inside the screen,
and/or interactively by explicit feedback. The method exploits the information in thousands of
screen frames collected from the user’s screen to detect the context and to recommend novel items
related to the current user task. By being able to extract entities across applications boundaries, the
approach is able to operate a holistic user modeling of intent considering relations between entities
in evolving task contexts.

We evaluate the approach through a study using participants’ real-life data and tasks. The system
is installed on a user’s laptop for two weeks for unsupervised learning of representation of entities
and their relationship during actual work tasks. After this users participate in an evaluation session
resuming previous work tasks. The system is set up as a separate screen where recommended
entities are visualized during users’ work. Users may open recommended documents, applications,
and contacts or give a feedback by selecting an entity which in turn updates the set of recommended
entities. This system setup is illustrated in Figure 1. A control condition is used to better investigate
the benefit of the system and verify, without visualization and user feedback, to which extent
predicted entities are relevant. The user study demonstrates the viability of the approach by showing
the added value provided by the system in terms of discovery of novel and relevant entities. More
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importantly, results indicate that recommended entities were found useful and influenced the user
tasks, leading to improved user experience in completing the task. The contributed approach bear
as important implications the potential of entity based user interfaces as well as the opportunity to
model the evolving intent and context of users across application boundaries.

2 BACKGROUND AND RELATEDWORK

Recommendation systems are increasingly affecting our everyday life, due to their capability to
help find relevant information in our fast-expanding digital universe. They monitor contextual
signals to create and update a user profile, which is then used to recommend information tailored to
the user’s context (e.g., [22, 35]). This work focuses on recommendation systems that are proactive,
i.e., those that don’t require users to perform any specific action but leverage users’ context and
past interactions to anticipate users’ needs [32] and provide them with information that is likely
to be relevant in an automatic way. In particular, our work is related to just-in-time proactive
recommendation systems [43], those that attempt to retrieve and deliver information when the
user is most likely to need it.
Table 1 summarizes several attempts to create proactive information retrieval support for a

variety of tasks varying from conventional web search [16, 31, 32] to document writing and
meeting preparation [15, 30, 60]. They mainly differ in their capability to capture context, in the
type of recommended items, and in the extent to which they allow users to explicitly affect their
models through interactive feedback.

This prior work, however, has mainly focused on how relevant document recommendations could
be provided within tasks that were either simulated [16, 30], or otherwise limited in scope [43, 60],
failing to provide a clear picture on themore interesting problem of how proactive recommendations
influence real-world tasks. In contrast, we aim to design a proactive recommendation system that
would be able to support people in a wide variety of everyday digital tasks, which, in turn, would
permit to evaluate with more rigor the influence and usefulness of proactive recommendations on
people’s real-world tasks.

In this section, we first review insights originating from earlier research on proactive information
retrieval systems with a special focus on those supporting primary tasks. Then, we analyze how
previous approaches have considered the opportunity to use entities and interactivity. Finally, we
review the notion of digital activity monitoring and delve into how it can be leveraged to create
recommendation systems that model users more holistically by capturing most of the human-
computer interaction.

2.1 Supporting Primary Tasks with Proactive Recommendations

Recent trends in information seeking research promote a view of the search activity as something
belonging to awider high-level task [24]. As a result, a large body of research has started investigated
novel ways to model the context of users and use such models to infer users’ intents. This has led,
for example, to the emergence of paradigms such as search personalization, where the user’s task or
search context is modelled [4, 51, 53] using previous queries and page visits [56], or click-through
data [8], or by modeling the task that motivates the information need [28, 37].

Proactive search [16] (or anticipatory search [32]) is a natural extension of search personalization
with the explicit query step removed. Here the user’s context is continuously being monitored and
the user model updated in order to anticipate the upcoming information need. An early example of
this paradigm is the Remembrance Agent [42] which monitors a user’s personal data, e.g., emails
and text documents and continuously displays a list of documents related to what the user is doing
now. Here document relevance is simply estimated based on the frequency of common words with
the currently active text, there is no long-term modeling. Letizia [31] is a similar early example
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Table 1. Comparison of proactive recommendation systems

Recommended
Items

Context
Extraction

Interactive
Feedback

Just-in-
time

Activity
supported

Evaluation of
usefulness

Letizia [31] Web documents
Browsing
behavior

No Yes Web search No

Remem-
brance
Agent [42]

Documents
Emails and
written notes

No Yes

Writing a
newspaper-
style article
[43]

Subjective scores

Elliot and
Jose [16]

Documents Browser Yes Yes
Multi-session
search

No

Koskela et al.
[30]

Web documents
Text from text
editor

On
keywords

Yes
Document
writing

Number of selected
recommendations

Watson [7]
Web documents
and images

Text from text
editor and
browser

No Yes
Document
writing and
web search

Potential usefulness of
first recommendation
(subjective scores)

SidePoint
[33]

Text snippets
and images

Text from
presentation
authoring
software

No Yes
Presentation
writing

Qualitative feedback
on the system (lab
study)

CAPERS [60] Emails Calendar No Yes
Meeting
preparation in
an enterprise

Number of clicking
and hovering actions
(field experiment)

IQ [15]
Documents,
people, topics

Emails
On overall
quality of
results

Yes
Reading or
composing
emails

No

CAAD [40]
Documents,
applications,
email addresses

Apps that
make native
OS calls

Update
clusters of
context
structures

Yes

Computer-
based
information
work

Perceived usefulness
from questionnaires
and interviews (field
experiment)

Vuong et al.
[55]

Documents and
keywords

Any app No No

Task detection
and proactive
retrieval
within a closed
set of tasks

No

Our system

Entities
(documents,
people,
applications,
topics)

Any app

One-click
explicit
feedback on
entities

Yes
Everyday
digital tasks

Influence of
recommendation on
tasks plus interviews
(field data collection
followed by a lab
phase)

that provides automatic recommendations during web browsing. A more modern application can
be found in current smart phones, for example in the form of Google Now, which tries to model not
only short-term search intents, but also long-term interests and habits based on several months of
collected data [20]. Here, user-specific context classes (e.g., tasks, interests, or habits) are identified
from their search history. Another approach is to extract patterns related to the time of day [50],
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for example that a certain task is usually done in the morning, and use these to anticipate resources
that the user will need at that time.

Proactive recommendations while performing specific tasks have also been studied. For example,
in [7], contextual text and image queries are performed based on text written by the user in a word
processing application, and, in [34], reference recommendations are shown in a similar scenario.
Other examples include proactively showing personal documents related to the current email being
read or written by the user [15], or during authoring of a Powerpoint presentation [33]. In [30], a
more generic approach to capturing the search intent from the primary task context is proposed.
However, the experimental part mainly studies the writing task.
In contrast to these earlier approaches, we propose a more general system based on screen

recording, which is not restricted to a specific task or application. In addition to dramatically
expanding its scope of usage, this also facilitates collecting data across all computer activities and
thus enabling more complete modeling of the entire human-computer interaction.

Contrary to other approaches, we aim to build a system that could be used to study relevance and
influence of proactive recommendation systems in supporting a variety of heterogeneous everyday
digital tasks. Prior studies have pointed out the need to more rigorously evaluate usefulness of
recommended information [7, 43], as relevance does not necessarily correlate with usefulness. In
[7], to determine whether or not the sources returned by Watson were useful in the context of a
particular task, authors asked six participants to send them a copy of the last paper they wrote,
fed the paper to Watson, and returned the first list of recommendations retrieved by the system
back to the participants for subjective assessment of usefulness. Similarly, qualitative evaluations
of usefulness have been conducted in Remembrance Agents, through subjective scores given
by participants [43], and in SidePoint, through qualitative feedback on the system [33]. Other
more quantitative approaches have considered interaction events such as number of clicks on
recommended items as proxies of usefulness [30, 60]. Although these studies reveal potential
benefits and challenges of proactive information retrieval, they fail to provide a realistic picture
of the actual influence of proactive recommendation on everyday digital tasks, because of their
reliance on simulated work tasks and their limited scope. The study that goes closer to our vision
is presented in [40] with the evaluation of the CAAD system. CAAD automatically generates task
representations (as context structures) from logs of low-level interaction events. Contrary to most
systems, CAAD captures context from most applications, i.e., those that make a native OS call.
The evaluation of the system was conducted in the working environment of participants over
three days. Questionnaires of perceived usefulness and interviews were used to gather qualitative
feedback on the system. One limitation of the study was that some participants used applications
that didn’t make any native OS call and were therefore invisible to CAAD. Although the study
used real-world tasks, it shared most of the limitations of other studies, including the limited
insights provided by subjective scores of usefulness and the overall focus on perceived accuracy
of suggestions. Other limitations of all these studies include the limited usage of semantics in the
provided recommendations, which might have limited their perceived usefulness, and the limited
use of interactive feedback, which might have mitigated the typical loss of control experienced by
people using proactive recommender systems.

In contrast, we study how proactive recommendations can be useful in everyday digital tasks by
measuring their actual influence on people’s task both quantitatively and qualitatively through
an in-the-wild data collection followed by a lab phase where people resumed their real-world
tasks. Contrary to other studies, we also employ a system that can provide more meaningful and
actionable recommendations through an entity-centric approach and the use of interactive feedback.
As typical everyday digital tasks require users to switch across several applications, our system is
not confined to specific applications. By employing screen recording, our system is able to model
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task-related context comprehensively, avoiding compatibility issues experienced in prior research
[40].

2.2 Entity-Based Interactions in Information Retrieval

In information retrieval, entities are references to real-world objects or concepts (e.g., persons,
places, movies, topics, or products). In web searches, most emitted queries pivot around a specific
entity [39]. This can be seen as a generalization of the keyword concept used by previous systems,
but with clearer affordances in the computer interface (e.g. clicking on a people entity could initiate
an action to contact that person).
Entity-based queries in current search engines result not only in a relevant entry (e.g., from

Wikipedia) but in a knowledge graph with relevant information and related entities, providing quick
links to further the exploration. Miliaraki et al. [38] studied the behavior of users of Yahoo Spark, a
system that recommends related entities alongside Yahoo Search results; the users take advantage
of the system to engage in exploratory entity search by discovering information through successive
clicks on recommended entities. Recent research work explores novel interaction techniques
through direct manipulation of displayed entities [1, 29, 45]. These systems display results as
interactive objects that can be used as a query or part of a query in a new search. Benefits of
these entity-based approaches come mainly from their reliance on users having to interact with
information they recognize (e.g. recommended or retrieved entities) over users having to recall
information, for example when typing a query. When providing both options, entity-based systems
have been shown to substantially reduce the need for typing, which make them especially useful
for touch devices [29].
In this paper we propose using entities as the basic unit for representing the user’s evolving

intent. Unlike other approaches for intent visualization and manipulation mainly based keywords
[17], we use entities because they provide a richer source of information and allow us to learn more
expressive user models. Entities represent familiar real-world objects and concepts, and could thus,
as interactive objects, provide the right affordances for letting the users interactively refine their
intent models.

2.3 Digital Activity Monitoring

Research on digital activity monitoring and prediction of user behavior has typically focused on
large-scale tracking, e.g., based on what people are sharing on social media [59, 61]. This mass
monitoring approach has some important draw-backs, including loss of privacy and lack of trust
for the system [9]. However, some recent work has studied technologies for individual monitoring
of personal data, putting the collection and analysis of the data into the hands of the individuals
themselves [12, 49]. The work described in this paper completes the picture by providing the
modeling and user interaction for enabling this vision.
Most of the approaches mentioned so far have focused on monitoring specific applications or

other limited data sources. However, recent work [54, 55] has explored using screen monitoring,
which captures the entire visual content of the computer screen for task recognition. Latent Semantic
Analysis [13] with a simple bag-of-words data representation was found to be the most effective to
detect users’ tasks and helpful for proactive information retrieval. This tracking "inside the screen"
paradigm has the benefit of being more general, as any visually communicated information can
potentially be captured, and utilized for building a richer task model. An approach similar in spirit,
but more limited, is described in [21] where seen text snippets are associated with files opened at
the same time.

Ourwork builds on the same idea of long-term screenmonitoring, but we utilize a semi-supervised
machine learning approach which learns the user intent in real time based on screen monitoring

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: February 2019.



0:8 S. Andolina et al.

and, if available, explicit feedback. Unlike in previous works, our proposed user intent model is
interactive and is employed to recommend different types of entities (i.e., people, applications,
documents and topics) that best match the user’s current intention.

3 SYSTEM DESIGN

Based on the current trends in information retrieval and envisioned scenarios, we hypothesized
that an effective interface for proactive recommendation support in everyday digital tasks should
support entity-centric recommendations but also be able to handle fragmented data, enable efficient
use of relevance feedback, and promote the generation of insights that are actionable.

3.1 Design Goals

• Entity-centric approach. The items recommended to support everyday digital tasks should be
actionable. They should not be limited to documents but include various kinds of information
entities – such as people, applications, documents, and topics – that can be used to represent
the task but also to perform specific actions related to the tasks. For example, opening a
document, contacting a person, or searching for resources associated to given topics.Moreover,
the user interface should include hyperlinks that permit direct access to the recommended
items.

• Task-related context. The system should be able to capture task-related contextual entities
across heterogeneous applications without requiring special application-dependent cus-
tomization.

• Interactive feedback and learning. The system should provide users the possibility to affect
the recommendation through interactive relevance feedback. The use of relevance feedback
should be efficient. In particular, reliance on explicit feedback should be minimized. The
user interface should provide easy mechanisms to provide explicit relevance feedback when
needed.

The practical implementation of the system consists of three main components: digital activity
monitoring, user interface, and the user intent modeling algorithm.

3.2 Digital activity monitoring

Collecting real-life data and tasks is a prerequisite for making relevant recommendations. We
aimed at a methodology that is able to unobtrusively collect all possible digital activities on a user’s
computer. Capturing the text read by the users on the computer screen offers a great potential
to capture all important information that includes all visually communicated input and output
(i.e., visual content that is generated and presented to a user on a computer screen). While screen
monitoring is capable of capturing all possible information across application boundaries, it is also
to capture user ongoing task-related context used to infer user potential search intents as well as can
used as user implicit feedback to rank and retrieve personal documents and applications. Apart from
audio, it captures all user inputs and presentation of content that occurs on the computer screen,
and is thus closely aligned with the user’s actual experience of the human-computer interaction.
The digital activity monitoring system is comprised of four components: Screen Monitoring

(SM), Optical Character Recognition (OCR) system, Entity Extraction (EE) system, and Operating
System (OS) logger.

• SM captures screenshots of active windows at 2-second intervals or alternatively captures
the text read by the users on the screen. SM is developed into two versions: a Mac OS version
and an MS Windows version. We utilized the Core Graphics framework to implement the
Mac OS version, and the Desktop App UI to implement the MS Windows version. Both

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: February 2019.



Proactive Recommendation in Context: From Relevant Items to Actionable Entities 0:9

perform an identical function which saves the screenshots of active windows as images. SM
only captures screenshots that indicate information changes on the computer screen. Any
keystrokes or changes in a computer mouse’s behavior (i.e., clicks, scrolls, zoom in/out) cause
SM to activate and wait for 2 seconds until no further inputs from the user, and commence
capturing a screenshot of the active window. In this way we could avoid taking screenshots
when the computer was idle, thus conserving CPU usage.

• OCR system detects and extracts text from the screenshots. We utilized Tesseract 4.0 1 which
is a commonly used and very accurate OCR implementation.

• EE system detects and extracts available entities from the OCR-processed screenshots. We
utilized the IBM Bluemix Natural Language Understanding API 2 to extract two types of
entity which were people’s names, and keywords.

• OS logger collects information associated to the screenshots recorded such as, names of active
applications, titles of active windows, available URLs of web pages or available file paths of
documents that are stored on the computer. In addition, OS logger also collects timestamps
of when the screenshots are captured.

All OCR-processed screenshots, extracted entities, and collected OS information were encrypted
and stored as log files on the laptops for further access in the later phase. The digital activity moni-
toring system had a pause button which allowed participants to temporarily pause the monitoring
when they did not want to share some of their private activities.

3.3 User interface and interaction

The system’s user interface (UI) is illustrated in Figure 2. It implements three specific features: 1)
showing entities being recommended by the system, 2) allowing selection of entities of interest by
the user (explicit feedback), and 3) allowing direct action on entities when relevant. In the following,
we describe how each of these features were implemented in our experimental setup.

3.3.1 Showing entities being recommended by the system. Recommended entities are displayed
within four rows of five items, one row per entity type, i.e., people, applications, documents and
topics (as keywords). People are identified by their name under a photo-based icon when available,
and a standard anonymous silhouette when not. Applications are identified by their name under a
standard icon or logo of the application or service. Documents are identified by their name under
an icon based on a preview of their content, with a small icon of the application used to read or
edit it. Finally, topics are identified as a single keyword. In each row, recommended entities are
ranked horizontally from left to right. Since the main purpose is to show a small variety of the most
relevant entities, the ranking is not visually emphasized. As users perform their tasks, the system
progressively updates the recommendations. These changes are reflected on the UI as entities
eventually shift places and new entities replace old ones in each row. In the prototyping phase,
since entities are displayed on an orthogonal grid, some users tried to derive meaning from the
vertical alignment of entities across rows. To prevent that, the grouping of recommended entities
by type in each row has been emphasized with a grey rectangle that acts as a container.

3.3.2 Allowing selection of entities of interest by the user (explicit feedback). When the user is
interested in a specific entity among the recommendations, she must be able to express her interest
in a way that informs the system so that recommendations update accordingly. To that end, every
recommended entity displayed on the UI can be selected with a click. As a result, the selected entity,
or entity of interest, appears in the area at the top and the overall recommendations (in every row)

1https://github.com/tesseract-ocr/tesseract/wiki
2https://www.ibm.com/watson/services/natural-language-understanding/
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Fig. 2. Two states of the system’s user interface. Recommended entities are displayed within four rows, here
with five items each: people, applications, documents and topics. The user can select entities of interest by
clicking on them, which updates the recommendations. Example: In (a), the user sees entities related to her
current work. She notices figures she has made for one of her papers (a1). She clicks on “Illustrator” (an
application for editing vector graphics) (a2), then on the topic “diagram” (a3). (b) As a result, the entities of
interest are displayed in the top area (b1) and the system updates the recommendations accordingly with the
user’s selection. In the documents row, she selects an illustration (b2) that she will modify for use in her new
paper.

are updated, taking the selection into account (i.e., a positive feedback on the selected entity is sent
to the system). More entities can then be selected and added to the entities of interest at the top of
the screen, providing an explicit way to influence the recommendations. Entities of interest can be
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Fig. 3. An example scenario: A notification (1) reminds Alice she should book flights and accommodation
for a conference in Hong Kong (2). Glancing at the recommended entities (3), she notices Bob who will be
attending the same event. She texts him to know where he will be staying (4). After bookings have been made,
she notices in the recommendations her friend Charlie who went to Hong Kong last year and sent her an
email about it. Selecting the entities “Charlie” and “Mail” (5a), she immediately recovers the email among the
updated recommendations (5b). Its content gives her ideas of what to do there (6).
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removed from the selection by clicking the cross that appears at their upper right corner when the
mouse cursor hovers their icon. Removal of an entity of interest from the selection sends a neutral
feedback on the selected entity to the system, which updates the recommendations accordingly.
The whole selection of entities of interests can be reset by clicking the “Clear selection” button on
the right.

3.3.3 Allowing direct action on entities when relevant. An important feature of the system is
to make the recommendations actionable. While work on translating recommended persons and
keywords into potential actions is ongoing, the present version simply allows to directly open
recommended applications and documents. Figure 3 illustrates the user interface through an
example scenario.

3.4 Learning and recommendation

The learning method receives the logged data from the digital activity monitoring (Section 3.2)
and prepares recommendations to be shown on the user interface (Section 3.3). The user then may
provide explicit feedback on the recommended entities, which helps the method to update the
recommendations. In the following, we first discuss the modelling challenges in learning the user
intent and recommendation of entities and then explain the details of our proposed solution.

3.4.1 Overview. We define context as a vector that represents all digital activities on user’s
computer at each time step. The set of digital activities in our setting includes OCR-processed
screenshot, recorded OS information, and extracted entities from EE systems. Giving this definition
for context, the user intent is modelled by a function that maps all the entities and all the previous
(and also unseen future) context vectors to continuous relevance values. Learning this function
is challenging since the number of entities and potential context vectors is huge (here tens of
thousands) while the learning signal from the user is rarely explicit. Any method attempting to
learn this mapping based on the explicit feedback alone would have difficulty, since there are limits
on how low in sample size statistical methods can go [14]. To amend the limited feedback, we
make the assumption that the recent contexts (i.e., latest user’s digital activities) are relevant to
the user’s current intention. Even with this additional learning signal, the learning method still
has to overcome the inherent noise in the logged context vectors; whether it is the noise in the
OCR system or false entity detections by the EE systems. Furthermore, the model needs to solve
the high-dimensional learning task in real time for interactive use.
To overcome these challenges we propose a semi-supervised intent learning method that uses

the logged context vectors to build a lower-dimensional representation of user intent. Learning the
intent function in this dimension helps to reduce the noise in the data and overcome the problem
of limited feedback. We connect the lower-dimensional intent on entities to contexts by making an
intuitive linearity assumption between relevance of entities and contexts, again by exploiting the
structure of the logged data. Finally, we define appropriate priors on parameters, and likelihood
functions (for different learning signals) to learn the user intent given recent contexts and user’s
explicit feedback. The learned intent is then used for entity recommendation. The mathematical
details are provided in the following subsections.

3.4.2 Exploiting logged contexts for intent representation on entities. We consider the unigram
model and store the logged contexts in the matrix X ∈ R |E |× |C | , where the element (i, j) describes
the tf-idf weighting of entity i in context j , E andC are the sets of entities and observed contexts, and
|.| denotes the set size. As mentioned, E and C are huge and X is noisy; still the data in X contains
valuable information about how the different entities and contexts are correlated. We are interested
to find a representation for entities, such that co-ocuring entities get similar representations and at
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the same time reduce the dimension. To this end, we use truncated singular value decomposition
(truncated SVD) to get the rankK approximation ofX asXK = UKDKV

�
K
. We then useWK = VKD

−1
K

to project the entities into a latent space. This dimensionality reduction in context space is justified
as the logged contexts naturally contain redundant context vectors. The user model is defined as a
linear model in this latent space,

rE = XWKθ , (1)

where rE ∈ R |E | is the vector containing relevances of all entities (we use rEi to refer to the ith

element) and θ is the K-dimensional latent user intent which will be learned in 3.4.4.

3.4.3 Connecting entities and contexts. The user intent θ , as introduced in Equation 1, only maps
the entities to their relevance values. We follow the keywords-documents connection idea in [11]
to connect the intent to relevance of contexts by making the assumption that the relevance of a
context is a weighted sum of the relevance of entities that have appeared in it, in other words

rCj =

|E |∑

i=1

p(i |j)r
E
i , (2)

where rCj refers to the relevance of the jth context (with some abuse of notation), and p(i |j) is the

likelihood of the ith entity being present in the jth context. This likelihood is not available but
it can be approximated based on the logged contexts (i.e., X ). We normalize the columns of X so
that elements of each context vector sum up to one and denote the resulting matrix as X̂ . Using
this approximation and writing Equation 2 in a vector format gives rC = X̂�rE . Finally, by using
Equation 1 we can directly connect the user intent to contexts

rC = X̂�XWKθ . (3)

3.4.4 Learning the intent. In the online phase of the study, the user can provide explicit feedback,
through the user interface, to the recommended entities. As mentioned, we additionally make
the assumption that the recent contexts, which the user has worked on after all, are relevant to
the user’s current intention. To incorporate these types of learning signals and for the modeling
convenience, we assume that the relevance is a sample from a Gaussian distribution with mean
value rEi (if it is on the ith entity) or rCj (if it is on the jth context) as defined in Equations 1 and 3.
The noise of these distributions should be different for entities and contexts, since the feedback on
them is very different.
These feedback likelihoods are connected through the shared user intent θ . By assuming a

Multivariate Gaussian prior on θ , we can complete the Bayesian inference loop and compute the
posterior of θ after receiving explicit feedback and recent contexts. The posterior has a closed
form solution and its mean is used to rank all entities (of different types: people, keywords, and
applications) and contexts (with their corresponding linked documents) to be recommended to the
user. Details of the posterior inference are provided in the appendix.

3.4.5 Computational complexity. The main computational bottlenecks of the system are the
SVD calculation and the projection of all the logged contexts and entities to the latent space.
These computations can be done offline, already before the beginning of the online phase of user
interaction3. We used the Gensim Python library [41] for fast and memory-efficient computation

3SVD can also be updated incrementally in real-time after receiving each context. Considering the short duration of the
online phase of the experiment, we decided to build the latent space only once before the start of the experiment.
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Entities extracted from screen data X X X
Recommendation of entities using screen data - X X
Recommended entities visualized - - X
Explicit user feedback on recommended entities - - X

Table 2. Configurations of each compared condition. Experimental design consisted of a baseline condition, a
control condition, and an experimental condition. The features are additive, i.e. the features of the baseline
condition are included in control and experimental conditions. The features of control condition are included
in experimental condition.

of truncated SVD. This offline computation took only a few minutes for all the participants of the
study.

In the online phase, the computational cost comes from the posterior calculation which is cubic
on the dimension of the latent space O(K3) (see the appendix). For K in order of hundreds the
computation is immediate (we used K = 100 in the experiments). The source code along with a
simple textual user interface is available at http://to-be-included-upon-publication/.

4 EVALUATION

The purpose of the experiment was to evaluate the quality of the recommended information,
usefulness and influence of the system with respect to the tasks, and users’ subjective experience
with the recommender system.

4.1 User Experiment Design

The study followed a within-subject design with two system configurations:

• Experimental (E): condition with the recommender system visible for the user. The input
to the system is the content of the screen and explicit input via the recommendation user
interface.

• Control (C): condition with the recommender system running in the background but not
visible for the user. The input to the system is the content of the screen.

In both conditions participants could use any application running on their laptop as they would do
normally, with the only difference being the availability of interaction in the experimental condition.
The two conditions were counterbalanced by changing the order in which the participants were
subjected to each condition.

4.2 Data Analysis Conditions

The experimental and control conditions were designed to account for the added value of the rec-
ommender method (control condition) and the interactive recommendation system (experimental)
over the information on the screen (baseline).

The baseline (B) condition was constructed to quantify the information appearing on participants
own screens. This baseline determines the information that the user has already accessed based on
the applications available on the their personal computer.
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The added value of the control condition is dependent on the recommendation method and added
value of the experimental condition is dependent on the recommendation method deployed as a
part of the interactive system. In both conditions, the added value of the recommended information
was quantified over the information that users were able to find with their own tools on their
personal computers.

The control condition allowed to quantify the relevance of recommended information resulting
from the recommendation method without incorporating the method into the interactive system.
The experimental condition allowed to quantify the relevance and influence of the full system. The
baselines were computed separately for each participant and condition that they were in. The
features of the conditions are shown in Table 2.

4.3 ResearchQuestions

We defined the following research questions to understand the differences between the experimental
and control conditions, and what appears in participants own screens:

RQ1 Does the interactive entity recommendation provide relevant information beyond what
the user can find with the present tools?

RQ2 Does the interactive entity recommendation influence the user’s information behavior?

4.4 Participants

We recruited participants by broadcasting a recruiting email message to relevant mailing lists at our
university. We provided a questionnaire in the recruiting message to collect information about the
participants’ background, the amount of activities that they do, and the amount of time they spent
on the laptop in the past several weeks. Only respondents who used the laptop as the main device
for performing their everyday digital activities were considered eligible for the study. Having high
educational background was another eligibility criterion, as we assumed that people satisfying
this criterion would more likely use their laptops for everyday digital activities. Overall, there
were fourteen respondents who were eligible to participate in the study. One participant quit after
three days due to a private reason, leaving the final number of participants to thirteen. Of these,
six participants had bachelor’s degrees, and seven participants had master’s degrees. There were
five males and eight females with an average age of 25 years (std = 5). In return for their efforts,
participants were compensated with 150 euros (before tax).
Upon joining the experiment, participants were informed of our privacy guidelines, and told

that the data will be encrypted and stored on the secured server at the university, and only be used
for the research purposes. The research followed ethical guidelines of our University. The consent
form was obtained from the participants regarding the procedure of the study, data management,
and data usage policy. Participants were informed that they were allowed to withdraw from the
experiment at any time, and all of their data would be removed from the server.

4.5 Tasks

Discovery of the user intent and retrieval of relevant entities concerning a user’s tasks is challenging
in this present study due to the real-life sparse data coming from the digital activity monitoring.
Some real-life tasks can be plain and quick, and do not require accessing multiple documents,
for instance, reading a book. We are interested in complex digital tasks which can be viewed as
concrete sets of digital activities that share a common topical context, and involve information
access to a large collection of files spanning across a variety of applications, such as word processing
documents, web pages, emails, instant messages, other different types of files, and folders locally
stored on the laptop.
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For example, a complex digital task can be a wider ongoing project, thesis work, or software
implementation that are related to many files, documents read and modified by the users through
many applications, or digital communication with other people. Alternatively, a task can be com-
posed of leisure activities, such as making travel plans that include collecting vacation ideas from
different websites, checking maps, organizing, accessing related notes, and making flight itinerary.

4.6 Procedure

The experiment consists of two phases: 1) two-week digital activity monitoring, and 2) a controlled
lab study. These are illustrated in Figure 4 and described in more detail in the following subsections.

Fig. 4. Experimental procedure consisted of two phases: 1) Two-week digital activity monitoring in which
logging software was installed on the participants’ laptops to continuously collect digital activity logs which
were encrypted and stored on the laptops; 2) Lab study included data processing, experimental tasks selected
and performed by the participants, interviews to collect direct comments and impression from the participants,
relevance assessment on the recommended entities, and lastly wrapping up the experiment by removing
installed software, screenshots, and plain-text logs.

4.6.1 Phase One: Two-week digital activity monitoring. In the digital activity monitoring phase
the logging software was installed on participants’ laptops, and set to run continuously in the
background thread for 14 days. Participants were advised to use their laptops as usual and avoid to
pause the software unless it was necessary during this period.
Participants were asked to keep a diary describing their daily digital activities. We provided

a mini booklet with a diary template including four fields: a brief statement about a digital task,
related keywords describing the task, people that are involved in the task, and estimated duration
of the task in a day. Participants were asked to write the diary using a pen and the provided
booklet whenever they felt comfortable during a day to avoid interference with their tasks. Several
example digital tasks were demonstrated to ensure that participants understood the requirements
of the diary. We asked participants to focus on macro tasks that were composed of many different
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Task Type Examples C E

Data processing Processing, analyzing, plotting, and testing data using
spreadsheets, statistics software, text editors.

1 1

Thesis work Materials gathering, thesis writing using various applica-
tions, such as file storage, repository, visualization tools,
word processing, and a variety of websites.

3 2

Literature review Reading articles, writing reviews pertaining to specific topic
using pdf readers, web browsers, and word processing.

1 1

Studying Searching information pertaining to exercises, writing a
report, language studying by accessing abundant resources
from online tutorials and using many tools, such as word
processing, pdf reader, file explorer, etc.

3 1

Personal informa-
tion management

Reviewing notes, managing files and emails pertaining to
a specific topic using note-taking tools, PowerPoint, file
explorer.

1 1

Programming Project implementation, Web development, figure sketching
using matlab, other integrated development environments,
and various web frameworks.

2 1

Course preparation Material gathering, and lecture slides preparation using web
browsers, powerpoint, word processing, pdf readers.

1 1

Travel planning Hotel booking, bus/flight/train ticket reservations, searches
using map interfaces.

0 2

Social life Managing group work, arranging shifts at work, commu-
nicating with others via instant messaging, email, online
timetables, word processing.

1 3

Table 3. Task types, their associated examples, and the number of tasks that were selected and performed in
the lab study for both conditions. C = Control, E = Experimental.

activities. For example, a digital task could be an ongoing project, or daily social networking. To
ensure that the diary was appropriately composed, the participants received a weekly reminder
about filling it in via an SMS.
The digital activity monitoring phase resulted in a database of 7,466 (SD=4,463) screenshots

per participant. The OCR process and entity extraction resulted in an average of 1,204 (SD = 555)
documents, 16,341 (SD = 7,141) keywords, 1,804 (SD = 757) people, 108 (SD = 45) applications, and
9,151 (SD = 3,351) non-entity terms.

4.6.2 Phase Two: Lab study. After 14 days, participants were invited back to our lab for phase
two of the experiment.
Data pre-processing and privacy preserving: Before proceeding to the experimental tasks, the

logged data was decrypted and the existing named entities inside the OCR-processed documents
were recognized and annotated using the EE system. The OCR-processed documents were tokenized,
split on white-space, and followed by lowercasing each word to build a corpus. We utilized Gensim
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library 4 to construct a dictionary which assigned unique integers (word IDs) to all the entities
and words appearing in the corpus. Tokenized OCR-processed documents were converted into
vectors which means each document were represented by a set of IDs using mappings between
words and their IDs in the constructed dictionary (an example of a dictionary is illustrated in
Figure 4). While data pre-processing was necessary for building user intent model, it was also to
support preserving user privacy. Ensuring the total user privacy in this study was paramount in
ensuring the participants’ cooperation. Any interaction logs occurred during the experiment and
assessment information collected for the evaluation were anonymized and contained no identifiable
information. All the plain-text words and entities existing in the logs and assessment were converted
to IDs which were unintelligible and irreversible without a correct dictionary. All plain-text logs,
OCR-processed documents, screenshots, and the dictionary were not archived and destroyed upon
the participants completing the experiment.
Experimental tasks selection: While waiting for the logged data to be pre-processed, we asked

participants to review their diaries and select two tasks that they performed during the monitoring
phase. In particular, we asked participants to pick the two tasks that they felt were similar in
category, on the same level of complexity, and comparable in duration. Participants were requested
to write down the description about two selected tasks in a note. After that, the experimenter
randomly assigned the two tasks to the two experimental conditions. In order to counteract fatigue
and other carryover effects, we counterbalanced the order in which the participants were subjected
to each experimental conditions. Table 3 presents the tasks that were selected by the participants
for the lab study for both conditions.

After selecting the tasks, the participants were briefed about the procedure of the experiment: they
were asked to resume a task on their own laptop, engage in a short interview, and assess the relevance
of the entities. Prior to starting the experiment, the experimenter set up the participant’s laptop to
connect to a secondary display which was an integrated 22" monitor of the SMI RED eye tracker5.
The second screen was turned on and the eye tracker calibrated prior to the experimental condition.
The recommender system’s UI was set to run on the secondary monitor, and the participants
performed their tasks on their own laptop. This experimental setup was designed in such a way that
it was easy for the participants to observe that potentially relevant information has been retrieved,
while at the same time it was easy to ignore the recommendations if the participants did not need
support from the recommender system. Participants were told that they had freedom to use or
ignore the secondary monitor according to their needs. In addition, OBS studio screen recorder6

was installed on the participant’s laptop to record screens of both monitors. The lab setup is shown
in Figure 5.
The participants then conducted two tasks, one using each system condition, preceded by a

training task.
Training task: The purpose of the training session was allowing the participants to familiarize

with the recommendation system. We trained participants on how to operate the user interface.
Participants were allowed as much time as needed to get familiar with the system. Training sessions
typically lasted around five minutes.
Main tasks (10+10 minutes): After the training phase, the participant executed the main tasks;

one with the experimental condition and another one with the control condition. After each task,
we went through the video recordings of the two screens (external screen only in the experimental
condition), and asked the participants to explain what they were doing during the task. For the

4https://radimrehurek.com/gensim
5https://imotions.com/smi-red/
6https://obsproject.com/

ACM Trans. Comput.-Hum. Interact., Vol. 0, No. 0, Article 0. Publication date: February 2019.



Proactive Recommendation in Context: From Relevant Items to Actionable Entities 0:19

experimental condition, we put special focus on understanding the participants’ intents when
interacting with the system.
Interview: After each task, we conducted a semi-structured interview to capture participants’

direct comments and impressions of the experience when using the system. In particular, inter-
views conducted after the second task included questions on the experiences in the two different
conditions.
Relevance Assessment: Finally, we collected relevance assessments on the information that had

been presented during the task. We asked the participants to assess the relevance of three sets of
entities: a random sample chosen from all entities appeared on the laptop’s screen including four
aforementioned entity types, a random sample chosen from the same number of entities appeared
on the laptop’s screen from top recommendations of the user model, and top 5 recommendations
of the user model (the entities that would be selected for the UI). These entities were extracted
at every recommendation point which occurred at 10-second intervals. The rationale of using
random sampling is to diminish user effort and fatigue from manual assessment on a large number
of entities. At the end of the task, entities extracted at all recommendation points were merged,
sorted alphabetically, and presented in spreadsheet file format for user convenience in providing
relevance assessments. The participants rated the entities on a scale from 0 to 3 (0: not relevant, 1:
low relevance, 2: medium relevance, 3: high relevance).

4.7 Post-Experiment Task Analysis

To understand to what extent the tasks in the two experimental conditions were comparable we
analyzed the number of entities consumed in each condition by the various participants. The
average number of screens captured and recorded was 47 (SD = 13) in the control condition, and
43 (SD = 13) in the experimental condition. On average, the number of documents was 11 (SD = 6)
and of applications was 5 (SD = 3) in the control condition, and in the experimental condition
participants opened 10 (SD = 6) documents and 6 (SD = 3) applications. There was an average
of 411 (SD = 216) keyword entities and 34 (SD = 23) people entities that occurred during the
task in control condition, whereas an average of 465 (SD = 36) keyword entities and 40 (SD = 36)
people entities were found on the screens captured from the primary monitor during the task
in experimental condition. No statistically significant differences were found in the number of
screenshots and entities across participants between the two tasks. The results reflect that the two
selected tasks were somewhat comparable.

4.8 Measures

Evaluation of proactive systems is difficult and usually done by comparing the recommendations of
the proactive system with the recommendation that would have been provided if an explicit query
was given to a search system [47]. This study evaluates the proposed proactive system in real-world
“in the wild” digital activities which can be broader than a search task. A set of both objective and
subjective measures was defined to operationalize the relevance and influence of information in
different experimental conditions (see Table 4).
Recommendation relevance (RQ1)
Recommendation relevance was measured as count, precision, and the cumulative gain of
novel entities that appeared during the session, either on screen (baseline) or in predictions of the
user model (in control and experimental conditions). The novel items are defined as the unique
entities at any point during the task, after excluding all the entities that had appeared previous to
that point in the screen of the user. The rationale of this strict measure is that it characterizes the
added value at the entities compared to what appeared on participants’ own screens. We compared
the three conditions (baseline, control, and experimental) by counting the number of entities that
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Fig. 5. The interactive setup. Participants used their own laptops to perform the tasks. An external monitor
was set up to connect to the laptops showing the recommender system’s UI. SMI eye tracking device was
installed and mounted onto the external monitor to track participants’ eye gaze behavior during the tasks.
In the figure, a participant continues a writing task for a research paper while the recommender system
continuously suggests relevant references to the manuscript.

Measure Results

Relevance

Number of novel-relevant entities in equal-sized random samples
(in B, C, and E).

Figure 6

Average precision and CG of top five recommended entities (in C and E). Table ??
Semi-structured interview about the quality of entities (in E). Section 5.5

Influence

Number of novel-relevant entities occurring in the screen subsequently
after they were recommended (in C and E).

Figure 9

Duration of the gaze fixations on the recommendation screen (in E). Figure 8
The amount of feedback and clicks on the recommended entities (in E). Table ??
Semi-structured interview about the influence of entities (in E). Section 5.6
Table 4. Summary of considered measures in different experimental conditions.
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are both novel and relevant (non-zero user assessments) in equal-sized random samples of each
condition. The sampling was done by first counting the total number of appeared entities on
screen, say N , and then selecting K = min(10,N ) samples from the screen (for baseline condition)
and K samples out of top N predictions of the control and experimental conditions. Additionally,
we compared the average precision and cumulative gain (CG) [25] over the novel items in the top
five ranked recommendations of the control and experimental conditions.

Influence of recommended information (RQ2)
The influence of the recommended information was measured via three types of measures targeting
human interaction with the system. The rationale is that in order for the system to be useful for
the users, it not only needs to recommend relevant information, but it must also influence the user
either to increased attention, interact explicitly with the recommended information, or use the
recommended information during the task.
Attention on recommended information was measured as the total duration of the gaze fixa-
tions of the participants on the recommendation screen.
Interaction with recommended information was measured as the amount of explicit feedback
on the recommended entities and the number of opened recommended documents.
Utilization of recommended information. Use of the recommended information was
measured by quantifying the subsequent utilization of the recommended entities. The rationale
was that in order for the system to assist the user in performing the task more effectively,
the system should recommend entities that are actually used by the user in the task. The
usage was measured as the number of novel-relevant entities occurring in the user’s screen
subsequently after they were recommended. Only unique entities were counted. That is, if multiple
recommendations correctly predict some entity that is utilized subsequently, it is counted only once.

Subjective experience of relevance and influence (RQ1 and RQ2).
Subjective experience of relevance and subjective experience of influencewere investigated
by using a semi-structured interview. The interview explored aspects related to the participants’
impression that the system had influenced the task, including the quality of the experience of
use, and the overall experience of relevance of the items displayed. Participants’ answers were
transcribed and underwent a thematic analysis. Transcripts were reviewed, and recurring themes
were identified and organized into a codebook. The codes were then applied to the corpus of data
[19].

5 RESULTS

5.1 Recommendation relevance

Figure 6 illustrates the recall of relevant items appearing on the user screen and in the user model
in both control and experimental conditions during the lab study. For documents, applications, and
persons the user model has been able to find more relevant items compared to the user screen in
both the control and experimental conditions.

More specifically, there was a significant difference in the recall of applications for the user model
(mod) and the user screen (scr) sources in both control (Mmod = 0.68, SDmod = 0.15,Mscr = 0.41,
SDscr = 0.19, t(12) = 3.99, p = 0.002) and experimental (Mmod = 0.78, SDmod = 0.15,Mscr = 0.29,
SDscr = 0.10, t(12) = 7.9, p < 0.001) conditions;

todo: double check the values Summing over the entity types, the experimental and control
conditions retrieved significantly more entities compared to the baseline (70 more entities in E with
p-value = 0.0014, 46 more in C with p-value = 0.0024). Furthermore, on average, the experimental
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Fig. 6. Recall. Paired comparison between user screen and user model in both control and experimental
conditions.

Fig. 7. Recall over time for user screen and user model in both control and experimental conditions.

condition (user model with explicit feedback) managed to predict more novel-relevant items
compared to the control condition (right column). This effect is also evident by comparing the
precision and CG of the top five predictions in Table ??. The difference was not at a significant
level between the control and experimental conditions7.

5.2 Attention on recommended information

Table ?? presents the summary of user interaction with the recommendation user interface. On
average, participants spent 1.3 out of 10 minutes attending to the recommendation user interface.
This indicates that the recommendation user interface was used, but the participants still tended to
focus more on the main task with 87% of the task duration. As expected, most of the task-related
activities were performed with the participants’ own laptops. A heatmap visualization of the gaze
fixations is shown in Figure 8.

7Baseline condition is discarded in Table ?? due to not having a natural ranking measure for samples.
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Recall P@5 nDCG@5 Influence Feedback

User Model User Screen Comparison User Model User Model User Model User Model

Applications

Experimental 0.78 (0.15) 0.29 (0.10) p < 0.001 0.55 (0.23) 0.69 (0.01) 0.46 (0.44) 1.62 (2.40)
Control 0.68 (0.15) 0.41 (0.19) p = 0.002 0.48 (0.22) 0.68 (0.02) 0.17 (0.17)
Comparison p = 0.04 p = 0.10 p = 0.48 p = 0.83 p = 0.04

Documents

Experimental 0.69 (0.26) 0.44 (0.25) p = 0.09 0.73 (0.27) 0.67 (0.04) 0.26 (0.28) 1.46 (2.03)
Control 0.62 (0.25) 0.50 (0.25) p = 0.36 0.65 (0.30) 0.58 (0.03) 0.05 (0.10)
Comparison p = 0.42 p = 0.52 p = 0.51 p = 0.30 p = 0.04

Persons

Experimental 0.77 (0.21) 0.60 (0.28) p = 0.13 0.39 (0.34) 0.49 (0.01) 0.04 (0.06) 1.62 (2.57)
Control 0.70 (0.30) 0.53 (0.31) p = 0.28 0.23 (0.21) 0.40 (0.02) 0.11 (0.28)
Comparison p = 0.48 p = 0.41 p = 0.10 p = 0.36 p = 0.38

Keywords

Experimental 0.54 (0.12) 0.61 (0.11) p = 0.25 0.46 (0.28) 0.52 (0.05) 0.01 (0.01) 0.23 (0.60)
Control 0.49 (0.22) 0.69 (0.16) p = 0.07 0.42 (0.26) 0.48 (0.07) 0.01 (0.01)
Comparison p = 0.45 p = 0.19 p = 0.74 p = 0.62 p = 0.73

Table 5. Results: 1) Recall of relevant items appearing on the user screen and in the user model in both control
and experimental conditions during the lab study. Apart from keywords, the user model was consistently able
to find more relevant items than the users would find on their own. The difference was significant for the
entity application. Additionally, on average, the user model found more relevant items in the experimental
condition. The difference was significant for the entity application; 2) P@5; 3) nDCG; 4) Influence; 5) Average
number of feedback clicks on entities.

5.3 Interaction with recommended information

During the attendance on the recommendation user interface, on average, the participants provided
explicit feedback on 4.92 entities; on average once in every 16 seconds during the attendance
on the recommender user interface. Most of that feedback was targeted at applications, people
and documents. Participants opened, on average, 1.08 recommended documents to support them
performing the task and all opened documents were assessed highly relevant with a score 3. In
summary, the results indicate that the recommendation user interface was used more than 10% of
the total task duration for implicitly perceiving information, explicitly providing feedback to direct
the recommendation process, and to access important documents related to the task.

5.4 Utilization of recommended information

Figure 9 provides a quantitative indication of how the information provided by the recommender
system was utilized in the remaining task. A paired-samples t-test indicated that the entities shown
on the recommender system were effectively used to accomplish the task.
More specifically, the total number (all entity types) of recommended entities that participants

used in their task was significantly higher (p-value = 0.058) in the experimental condition (in which
the entities were actually shown) than in the control condition (in which the system was running in
the background). This result indicates that the recommended entities were used in the task because
participants saw them on the proposed system, and not by chance. In particular,
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Fig. 8. Heatmap visualization of the eye gaze fixations on the recommender system’s UI.

Fig. 9. Influence of recommendations on the task.

Fig. 10. Influence of recommendations on the task over time.
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5.5 Subjective experience of relevance

Overall, the participants reported a positive experience with the system (N = 9): “I enjoyed it... I got
surprised that it recommended things that I just intended for” (P01). All participants (N = 13) found
the entities recommended by the system relevant:

They were right on the spot (P04).

They were surprisingly relevant, various kinds of applications and various kinds of ma-
terials. . . I had for example this task manager, various emails, various files. . . they were
really relevant for the subject. . . so it was quite good in that sense (P07).

They were mostly very good. I think there was maybe a couple of them. . . they weren’t
relevant, but mostly it had picked up the right side (P03).

However, some participants (N = 2) specified that it took a while for them to get relevant results:
“At first they didn’t have much to do with what I was doing. . . but the more feedback I gave to
the application I felt, like, relevance got a lot higher each time, so in the end they were pretty good” (P11).

Furthermore, 10 participants mentioned that the system helped them recall specific entities useful
for their task:

It reminded me Github. Although I would have opened it while I was working, it didn’t
really came to my mind. . . I could forget to commit my code, so it is useful (P05).

I didn’t remember that article that I got in the recommendation until I was reminded by
the interface and then I was, like, ‘Yay, that is actually something that’s gonna help me
further with the subject’ (P12).

5.6 Subjective experience of influence

The majority of participants (N = 10) felt that the system affected the task:

It made it easier to find the book, and faster (P11).

It had a positive effect. I was thinking to remember the file name, and what I did was
to just watch what the system was recommending me, and I just immediately found the
name of the file. So it saved my time, otherwise I would have to find the location where I
put that file. So it just simply did it for me (P01).

Yes, it did. For example I ended up opening one of the files that was suggested, so that was
something that directed quite a lot the task (P04).

A smaller proportion of participants (N = 3), however, did not have the same impression that the
system had affected the task, either because the task was easy and didn’t require much support or
because of the limited time they had for the task: “No. I knew what I had to do so I didn’t need the
support” (P10); “Just within 10 minutes it didn’t really affect, apart from when I opened my ‘Github
Desktop’” (P05); “10 minutes is very short for writing a thesis” (P10).

Most participants reported that the system was useful at some point during the task (N = 11),
typically by making it easier to access information or to recall relevant information related to the
task. More specifically, six participants found the system useful in enabling faster information
access:

It was smart enough to recognize that when I use Overleaf it would give me the book I’m
using as material. . . and I could open the book, the link right away from there. . . That
was a big help because if it wasn’t there I would have had to go to the University’s library
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website and then search the book and then go. . . [. . . ] and then open it. . . but now I could
just click it right there (P11).

I was looking for a file [thesis doc] that is related to the one I have [opened in my laptop],
a separate one that has comments on it, and I found it there [on the interactive system],
and it was exactly what I was looking for. . . without. . . I was not writing anything, like,
that I am looking for a file, it was just in my mind. . . but somehow it appeared (P07).

The systemwas found easy to use by all participants. The interface was found to be “straightforward”,
“simplistic” , and “obvious”. Participants particularly appreciated the proactiveness of the system
and how it effortlessly provided useful information:

I didn’t have to do anything, it just suggests [things] for me there. So it’s not yet another
search-ware or anything that I need to act on it. It’s just there, I don’t need to do anything
with it but when I look at it, it provides me relevant solutions so. . . easy (P07).

As interviews indicated, the majority of the participants (N = 11) noted a difference between
the experimental conditions, and preferred working with the recommender system. Notably, four
participants explained how the system was a sort of companion that helped carrying out the task
with new ideas but also made it easier to stay on track:

The system gives me ideas to think out of the box. . . it’s like talking with somebody, having
a discussion that it could widen my ways of thinking how the task should be done (P02).

It’s like having a notebook next to you with notes on what you should be focusing on, like
a list of things you should be doing (P12).

However, some participants (N = 4) reported an increased effort due to the switch of attention
required by the multiple screens setup: “My attention was a bit divided because of the two screens. . . ”
(P12); “I switched my attention sometime to the tool were I saw the various suggestions. . . it could be
even not so good if I had all time switched attention” (P03).

The majority of participants felt in control of the system (N = 11) because they had the feeling
that the system was reacting to their digital activity. In particular, six participants pointed out that
the feeling of control was mainly due to the capability of directing the system through the feedback
mechanism:

When I checked some boxes [gave feedback] or took them off [removed the feedback], it
[the system’s content] changed, so, I kind of felt like it was me who affected how it worked,
so I felt I was in control (P03).

Nevertheless, two participants pointed out that they would feel more in control if they could
remove unuseful entities from the set of recommendations: “I think I would feel more in control if
I could actually take off the recommendations, like, the tasks [keywords] or the pages [documents]
I already did, like, [those] I don’t have to use anymore” (P11). Also one participant didn’t feel in
control: ‘No, since it’s only giving me something that I can choose” (P10).

Some participants had specific wishes or suggestions for how to improve the system. More specif-
ically, three participants mentioned that they would prefer to have the system running on their
laptops: “If it could have been somehow embedded into the same screen. . . the suggestions would have
been directly there where I was working” (P04). Finally, three participants missed the capability to
conduct explicit searches, at least for initializing the system: “In the beginning it’s a bit hard because
you cannot set any recommendations. . . it would be useful to set for example some keywords right
away” (P12).
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6 DISCUSSION AND CONCLUSIONS

In this paper we have investigated whether proactive entity recommendation could effectively
support everyday digital tasks by automatically providing task-related entities that are relevant
and useful. We introduced a user intent modeling approach where user intentions toward entities
are modeled based on digital activity monitoring and explicit user input. An online system
implementing this vision by using digital activity monitoring and second screen recommender
system was presented. We reported results from an experiment where users were monitored for
two weeks, and demonstrate the performance of entity-centric user intent modeling in improving
and positively influencing real-life user tasks. We next reflect on the research questions defined
earlier.

Relevance and influence of items across heterogeneous applications. Prior research on proactive
agents had pointed out the need for designing techniques that were generally applicable, so the
agents could be adapted quickly to different domains, corpora, and individual preferences [43]. Our
study demonstrated that our entity-centric approach based on digital activity monitoring was able
to effectively support users working with heterogeneous applications in their everyday digital
tasks. Digital activity monitoring, in particular screen recorder built on top of applications’ user
interface layer, permitted to extract context across application boundaries, overcoming one of the
main limitations of prior work. In our experiment, participants engaged in tasks ranging from
thesis writing, data processing, and coding, to travel planning and other social tasks. Within such
tasks users were involved in various activities, and their intent was often rapidly changing. Our
results on relevance and influence of recommendations, together with our qualitative findings,
show that the system effectively captured the rapidly evolving intent of participants and provided
them with useful recommendations.

Entities help re-establishing lost connections. The entity-centric approach also helps in situations
in which people have a specific item in mind but cannot recall exact pointer or name of the item.
In these cases people can recall cues from their memory in order to narrow down the search,
for example on whether the item is related to a particular person, or topic. Prior research has
pointed out how search capabilities that retrieve information from a variety of sources, using a
number of cues, in addition to keywords or folders, are critical for supporting the users in the
above mentioned situations [10]. Our approach based on digital activity monitoring allowed
us to capture a large set of entities in an automatic way, overcoming the limitations of more
traditional approaches based on metadata [15]. Quantitative and qualitative results show that
giving feedback to entities was an effective way to find the desired information, which also helped
mitigate the feeling of losing control, a problem often faced when using proactive search systems [3].

Entities as interactive objects for feedback and actions. Entity selection was found to be a simple
and effective way to specify one’s own evolving intent when performing a task in order to retrieve
the desired information. Results show that the explicit feedback was consistently used during the
10-minute experimental tasks, with an average of 3.31 selected entities. Qualitative findings suggests
that this mechanism was one of the main factors contributing to the overall positive experience
with the system. While the good acceptance and use of explicit feedback aligns with the idea that
interactivity is an important factor to be supported in search activities that are part of wider primary
tasks [26], it contrasts with other studies where feedback mechanisms were not well received
[30, 57]. One possible explanation is that using entities as interactive objects could have played a
main role in fostering a more active use of feedback. This intuition is confirmed by the low usage
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of the topic entity, which was the information item that most resembled what used in other systems.

Just-in time recommendation of useful resources that are forgotten or unknown. One challenge
with complex everyday tasks is recalling useful resources that we bookmark or store for future
reference. As part of their tasks people typically organize a wide range of resources that they
think could become useful, so as to allow easier retrieval at a later stage. For example, as part
of this, people bookmark web pages, organize emails in folders, or save documents to their hard
drives. However, these useful resources are often forgotten until well after the period of their
usefulness has passed [27]. With our system we remove this "out of sight out of mind" problem by
automatically recommending important entities that users needed for performing their tasks, right
when they need it. Results on influence of recommended information on the task show that 1.31
documents recommended in the experimental condition were subsequently used to accomplish the
task. The comparison with the control condition, yielding a value of 0.31, demonstrates that in the
experimental condition, on average, one document used to perform the task (1.31 − 0.31 = 1.00)
would not have been found without the support of our system. Qualitative findings from interviews
confirm the intuition given by the quantitative results, with ten participants reporting cases in
which the system helped recall useful entities related to the task.

Additionally, the just-in time recommendation provided a source of inspiration, as indicated by
interviews. This suggests that the task-related context structures extracted by the system contained
insightful information that users had not noticed before.

Effortless access to information. One of the advantages of automatically predicting and retrieving
potentially useful information in advance is that when the users decide to search for it, the
information might be readily available without users needing to exert themselves to formulate
queries. This happened several times in our study. In the interviews, participants reported cases in
which the needed information was correctly predicted at the right time, based solely on the implicit
interactions of the users, permitting immediate access. Other times the information could be easily
retrieved after giving feedback to entities recommended by the system. Prior research points out
that, although searching seems to offer obvious benefits over other methods, people still prefer to
find their personal information by navigating through folders [52]. As people typically need to
retrieve information items in support of a primary task, they prefer to do it in the most automatic
ways, those that take less attention away from their primary tasks. Unlike searching, which
requires mental effort, navigation is done mostly automatically because people are very familiar
with the folder structures [6]. Our study on proactive entity recommendations, on the other
hand, suggests the our method has the potential to combine the benefits of search and navigation
for personal information finding. With our approach, searches where performed proactively in
the background without requiring users to formulate queries, thus requiring less mental effort.
Additionally, our interactive entity visualization provided visual cues that guided users toward
the desired items, iteratively, by following familiar elements, similarly to what happens in folder
navigation scenarios. However, our method shares the limitation of other systems for search and
recommendations. Recommendations do not always come in the same order, making them less
consistent than navigating through well known structures. Whether or not our method can change
people’s preference for navigation-based personal information access remains therefore an open
question for future research.

Actionable insights. Traditional keyword recommendation may not necessarily expose affor-
dances to the users, therefore providing them with little practical value. Entity recommendation,
on the other hand, provides more actionable information items, as the item type already suggests
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the actions that could be done on the item. For example, seeing a recommendation of a person
entity already signifies the actions that can be associated with that person, such as calling, texting,
emailing, and so on. By providing hyperlinks that permitted instant access to related resources,
our system made the insights provided by the entity recommendation even more actionable.
Results show that, in the experimental condition, 1.08 documents used during the 10-minute
experimental task were opened directly from the system’s user interface. Making the entities
actionable supported faster access to information, which positively affected the user experience
as discussed above. However, it is interesting to note that the recommendations were useful
regardless of whether people clicked on them. For example, participant P1 was engaged in a task
that required to name files with a certain convention. In the interview, P1 explained that in order
to retrieve that information he would have had to check out a prior project, which, in turn, would
have required remembering the location of the files with the desired naming convention used in
that project. Getting recommended a file with the proper naming convention, before he could even
start searching, saved P1 much time, and didn’t require to open the file; the mere sight of it solved
the problem.

6.1 Answers to the research questions

RQ1: Does the interactive entity recommendation provide relevant information beyond what the user
can find with the present tools? Yes, the proactive entity recommendation is able to recommend
noticeably more novel (not seen before on the user’s screen) relevant information than those
appearing on the user screen during the actual task, with or without feedback (Figure 6) This
improvement is consistently greater when the user is able to interact with the system (Table ??).
This is in line with the qualitative results from the interviews, showing that the feedback
mechanism has an important role in improving the quality of recommended entities for the
majority of participants.

RQ2: Does the interactive entity recommendation influence the user’s information behavior? Yes. In
the experimental condition, participants had access to recommendations that were subsequently
used to perform the task (Figure 9). Interaction results (Figure 9) show that participants looked at
the recommendations and used the handles provided by the system to directly access documents
useful for their tasks. Qualitative feedback from interviews further confirms that the recommen-
dations positively affected the task by reminding participants about specific activities or pieces
of information that were relevant to their task. Participants generally reported an improved user
experience when performing their tasks with the support of the recommender system. The system
was perceived by participants as a companion that provided useful insights on how to perform the
task. By reminding participants about the various entities related to the task, the system permitted
to reconstruct the typical activities they performed during their task. Furthermore, the system
allowed faster access to information. During their tasks participants needed to access documents of
various kinds, such as pdfs, emails, code snippets, or websites. Forgetting the name or location of a
file, the applications used to communicate with team members, or the subject of an important email,
could make it difficult to retrieve the needed information. With our system, instead, participants
could easily retrieve some important documents they needed for their tasks, either without any
explicit input (for example by just opening a different relevant document), or, by selecting key
entities in the system. This allowed the participants to save time with consequent improvement of
the perceived experience. The benefits provided by the system came with moderate costs in terms
of division of attention, as reported by some participants. All in all, the participants reported a
better user experience when the proposed system was available.
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6.2 Implications

The implications of the results for user modeling are striking as they open opportunities to learn
user models holistically across the confines of individual applications. Our results demonstrate that
it is possible to comprehensively and accurately estimate user intentions from simple input just by
recording the user’s screen. Moreover, our results highlight several benefits of an entity-centric
approach in supporting heterogeneous tasks. Contrary to other systems which are merely based
on keywords, the proposed approach permitted to extract meaning from the data and provided
users with actionable insights, which, in turn, enabled easy information access, recall of the various
resources related to the task, and inspiration for decision making.

6.3 Limitations and Future Work

Our work has some limitations that could be addressed in future work. While our approach based
on screen content allows us to build a holistic user model from a single data source with little
or no human supervision, and to provide useful entity recommendation, this method also has
drawbacks. For example, active windows may include information that is always visible regardless
of the particular task, such as web bookmarks. This kind of information may produce confusion to
the model. Also, the model does not account for similarities between the recommended entities. For
instance, a person’s name can appear in different configurations (in full, abbreviated, etc.) in various
applications, and thus the same people (and in general the same entities) can be recommended
multiple times in the same recommendation set. Furthermore, our proposed modelling solution, in
its core, uses linear models to tackle the three main challenges in the considered setup (namely,
the inherent noise in the digital activity monitoring data, limited explicit interaction with the user,
and real time performance necessary for interactive use). Although linear models are the preferred
solution for the mentioned challenges, more complex models, such as deep neural networks, may be
able to learn more complex user intents. Lastly, the data collection in the digital activity monitoring
phase involved participants who turned the monitoring off for some part of their activities. Further
studies of the kind of data the participants conceal on purpose would help set privacy boundaries
expected by users in a more automatic way.

APPENDIX

The following likelihood functions model the three possible learning signals from the user –namely,
newly generated context, explicit feedback on a document which is linked to a context, and explicit
feedback on an entity:

f nC ∼ N(xCn θ ,σ
2
nC

),

f eCj ∼ N(xCj θ ,σ
2
eC
),

f eEi ∼ N(xEi θ ,σ
2
eE
),

Here the f ... s are the learning signals (feedback values), the x .
. s are the projected feature vectors,

and the σ 2
..
s denote the feedback noises. We distinguish entities and contexts by letters E andC , and

the new observing context and user’s explicit feedback by letters n and e , respectively. Following
Equations 1 and 3, xCj is the jth row of X̂�XWK , xEi is the ith row of XWK , and xCn = v̂�XWK ,
where v̂ is the normalized (sums up to one) feature vector of the new context (see 3.4.3). In order to
complete the probabilistic model, we put a Gaussian prior distribution on θ as θ ∼ N(0,σ 2

θ
I). The
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posterior of this Bayesian regression has a closed form solution as

p(θ | MnC , FnC ,MeC , FeC ,MeE , FeE ) = N(μ, Σ),where

Σ−1 = σ−2
θ
I + σ−2

nC
M�

nC
MnC + σ

−2
eC
M�

eC
MeC + σ

−2
eE
M�

eE
MeE ,

μ = Σ(σ−2
nC

M�
nC

FnC + σ
−2
eC
M�

eC
FeC + σ

−2
eE
M�

eE
FeE ).

Here the F .. s are the vectors of observed learning signals and theM .. s are the design matrices (that
is, feature vectors corresponding to learning signals) from different sources.
We experimented with a pilot user, before starting the experiments, to roughly tune the hyper-

parameters of the model. The parameters were fixed as σ 2
eE
= σ 2

eC
= 0.01, σ 2

nC
= 0.05, σ 2

θ
= 0.1, and

K = 100. Positive learning signal was coded as value 1 and we considered the observed contexts in
approximately the last minute of the interaction as the new contexts that are relevant to the user
intention.
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ABSTRACT
We introduce the concept of hypercue, a complement to hyper-
links in the form of an interactive representation of real-world
entities (e.g., persons, places, concepts) providing personal-
ized access points to information. Hypercues create opportuni-
ties to flexibly discover, store, and share information; organize
one’s thoughts; and gain insights from the data.

We explore the design space of interaction techniques support-
ing entity-based information exploration by reviewing recent
examples of such work. We reflect on these through the lens
of eight essential features of exploratory search systems to
devise generalizable design principles. Our main contribution
is a design template describing the hypercue, which consists
of a minimal set of affordances that ensure all important fea-
tures for supporting exploratory search can be addressed while
leaving enough design space to facilitate integration with a
variety of systems. Finally, we describe the rationale behind
the design template and discuss its implications.
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INTRODUCTION
The amount of available information keeps growing exponen-
tially, and the access points provided by query-and-response
search engines – the ten blue links – are too narrow to offer
a sensible overview of available material related to a given
query. We need options for broader and more personalized
access to information, and help making sense of it. Thankfully,
new technologies in information retrieval have created oppor-
tunities to address these problems and rethink online media
access and structuring. As entity search and recommendation
become a reality and as recommender algorithms become per-
vasive, users’ information trails rely less on documents linked
explicitly by content creators.

Current work on search and recommendation technologies
is mostly focused on the development of adaptive and au-
tonomous user interfaces that ease the search process by re-
ducing explicit user inputs at the expense of transparency and
user control. An opposite approach would be to reinforce
user control through the use of direct manipulation and rich
user interfaces that provide users with a feeling of accomplish-
ment and increased responsibility over the search process, as
advocated by Ben Shneiderman [29]. Development of such
systems is not new [1] but their reliance on filtering methods
often limits them to homogeneous datasets and specific use
cases (e.g., movie exploration and product finding) that limit
opportunities for discovery and generalization.

However, as contemporary search and recommendation is fu-
eled by extremely complex data structures, the same technolo-
gies create the opportunity to develop interactive systems that
provide users with the ability to finely steer their progression
within the information space in accordance to their immediate
needs, understanding and inspiration. Related information and
overview of the data can be computed on the fly to suit the very
specific needs of each user at any time during the exploration,
providing constant access to more detailed or more general
information, new directions and branching topics. To enable
such possibilities, we need visualizations and affordances that
do not rely on preestablished criteria to further the exploration.

The need for supporting information exploration has been
demonstrated by studies and models of information-seeking
behaviors. Features of such support have been described,
and most information tools (e.g., websites and browsers) al-



Figure 1. Information exploration is often compared to a journey through the information space. In practice, however, text-based querying and the
limited overview force users to take multiple discrete steps inside the information space to make sense of it (a). In our research, we aim to utilize the
underlying data structure to help users make sense of the information space and foster insights (b).

ready implement such features by providing shortcuts to quick
lookup, related items or info boxes when relevant. Our re-
search builds upon such streams of work to develop actionable
solutions for implementing said features. However, instead
of taking an additive design approach that would consist of
bundling together multiple widgets, each addressing a specific
task, we are more interested in the exploration of alternative
interaction paradigms and the discovery of novel key affor-
dances to take full advantage of the volume and complexity
of the data available today. Although entity-based exploration
has been studied and is already commonplace, it mostly con-
sists of following information paths provided by successive
single recommended items, like following a path of hyperlinks.
Such an approach can lead to enjoyable serendipity, but it lacks
the means to show the personalized results that a typed query
can provide. As for typed queries, recalling search terms to
formulate and reformulate queries (especially when exploring
an unfamiliar information space), is not as easy as following
visible items. Moreover, although information exploration is
often compared to a linear journey through an information
space (e.g., the information foraging theory [23] or the berryp-
icking model [3]), in practice, text-based querying and limited
overviews force users to take multiple discrete steps inside the
information space, as seen in Figure 1a, instead of utilizing
the data’s rich underlying structure as seen in Figure 1b. Our
work suggests that a few key affordances, such as the ability to
compose queries by grouping multiple entities and then refine
it as new entities are discovered, provide a compelling and
efficient way to explore a large information space while taking
advantage of its entity-based structure.

This conceptual work is a reflection on our exploration of
interaction techniques designed to support entity-based infor-
mation seeking, grounded in available literature. Our main
contribution is a design template describing the hypercue, an
interactive representation of entities that provides personalized
access points to information and serves as a complement to
hyperlinks. Hypercues create opportunities to flexibly dis-

cover, store, and share information, and to gain insights from
the data. The hypercue design template consists of a mini-
mal set of affordances that ensure all important features for
supporting exploratory search can be addressed while leaving
enough design space to facilitate integration with a variety of
systems. We describe the rationale behind the design template
and discuss its implications.

BACKGROUND
A large body of work builds upon what seems to be a human
propensity to consider the information space as a physical
space in which we move, progress and discover. Bates’ berryp-
icking approach to search [3] and the information foraging the-
ory [23] describe users’ information-seeking behavior through
the metaphor of a physical journey. With the “information
flaneur”, [6] Dörk et al. go deeper into the physical metaphor
by comparing information spaces to the 19th-century city in
terms of growth, cultural significance, and being the place
for social struggle and negotiation, and they use such paral-
lels to envision “positive” approaches to information practice.
Such models have all contributed to shift the emphasis from a
mostly technical consideration of information retrieval toward
human processes [14]. We see the present work as the design
counterpart of such a framework, providing actionable princi-
ples toward implementation of systems supporting and based
on observed human behaviors.

In this work, we utilize entity search as technical opportunities
supporting fluid information exploration as a goal. Here, we
clarify these two essential notions.

Fluid Information Exploration
When we discuss interactions and user interface design, flu-
idity is often cited as a goal [10, 25]. White and Roth [31]
mention fluid interactions as an important feature of future
search systems when discussing novel interaction paradigms.
They link that notion to human-machine symbiosis and inter-
actions through fluid hand gestures, citing the fantasy user



interface from the movie Minority Report as an example of
what a truly fluid interface could look like. However, that
notion is not theoretically defined and is generally used while
relying on the reader’s intuitive understanding of the metaphor,
something that flows continuously, naturally making its way
around obstacles and adapting its pace to the environment.

A satisfying operational definition is proposed by Elmqvist
et al. [7], who work around the difficulty of defining fluidity
theoretically by focusing on the properties we can expect from
fluid systems. These properties are grouped into three sets:

Fluid interactions support direct manipulation: Direct ma-
nipulation describes an interaction paradigm in which digital
representations of objects behave as objects themselves [28].
Direct interaction with these objects is enabled by reducing
indirections between input and output spaces. For example,
the touch-sensitive layer of a touch device is confounded with
its display and calibrated so that inputs are registered precisely
at the display location. The paradigm relies on a preference
for physical actions, and immediate visible effects allowing
rapid course adaptation [13].

Fluid interactions promote flow: Flow is a mental state induced
by immersion in one’s activity, characterized by a loss of
sense of time. The main actionable property for inducing flow
relies on letting users feel in control, and employ just the right
amount of skills to let them progress in their tasks at a pace
that will feel neither too slow nor too fast, accommodating a
person’s continued and deepening enjoyment as skills grow
[20].

Fluid interactions minimize the gulfs of action: The gulfs of
action are a notion introduced by Donald Norman [21], who
uses it to describe the gap between a user’s expectation of a
system and the system’s actual state.

A limitation of this definition is that these properties are not
complementary, as they seem contained in Shneiderman’s
advocacy for comprehensible, predictable and controllable
user interfaces through direct manipulation [29]; however, it
provides various approaches to the implementation of such a
goal.

Our focus on fluidity is not exclusively motivated by perfor-
mance or the sole objective of making the user more efficient
in accomplishing her task. Fluidity conveys open-endedness
and the consideration that the process itself, through the po-
tential discoveries it may yield, is often just as valuable as
the end product. The information flaneur [6] offers an inspir-
ing model of information seeking centered around positive
information practices, as opposed to considering information
seeking the fulfilling of an information need or addressing of
a deficiency. The information flaneur’s implications for re-
search and design offer design goals for fostering or enabling
such experiences by considering explorability principles (e.g.,
orientation, visual momentum, and opportunities for serendip-
ity) and bridging gaps between information spaces, contexts,
and conceptual levels by exploiting scalable or generalizable
rules and common patterns. This focus on continuity and
momentum of the exploration experience complements the
operational definition of fluidity.

The present work reflects our commitment to such an approach
to information practices, as we strive to design interactions
that do not induce specific behaviors nor limit their utility
to very specific scenarios. Given a specific scenario or task,
dedicated tools might undoubtedly outperform a more gen-
eralist approach applied in a monolithic system. However,
we envision a future of information exploration where users’
interfaces of choice are not constrained by the data but by
personal preferences that could indifferently and seamlessly
be used to navigate academic literature, a movie streaming
catalog, the news or social media posts, allowing the transfer
of any progress from one tool to another thanks to a set of stan-
dard affordances like the ones described in the present work.
We work toward that goal by implementing the principles of
fluidity mentioned above. We support direct manipulation by
enabling direct interactions with every bit of displayed infor-
mation that is relevant to the user. As a result, we design for
touch-enabled displays, and present information in the form
of objects that can be manipulated. We build interfaces around
small sets of simple rules that are consistent across a given
system, which we achieve by limiting the amount of widgets
and separate views and preferring single workspaces. Through
these principles, we attempt to facilitate memorization regard-
ing operations while enabling creative strategies and behaviors
leading to potentially complex results.

Entity Search
In the information search field, entities are references to real-
world objects or concepts (e.g., persons, places, movies, topics,
and products). Entities are linked with typed relationships. For
example, “Tom Hanks (actor)” and “Forrest Gump (movie)”
are linked via "stars in". Together, they form a graph in which
entities are nodes and relationships are the edges. Such graphs
are known as knowledge graphs and generally stored within
knowledge bases.

In web searches, a majority of emitted queries pivot around a
specific entity [24]. Knowledge bases are useful to providing
additional information around an entity and recommending ad-
ditional entities. In conventional web search engines, queries
pointing toward an entity will usually trigger a first result that
points to the information source with the most general informa-
tion about the entity (typically, the corresponding Wikipedia
entry), which in turn requires the system to be able to match
the typed query to the corresponding entity.

Entity-Based Exploration
Google Search provides for most entity-based queries not
only a relevant entry but a knowledge graph with relevant
information about the entity and recommended related entities
in the case of an actor, name, age, and lists of movies and
costars. Miliaraki et al. [18] studied the behavior of users
of Yahoo Spark, a system that recommends related entities
alongside Yahoo Search results; the users take advantage of
the system to engage in explorative entity search by discover-
ing information through successive clicks on recommended
entities. Such cases exemplify why entity-search is considered
an ideal paradigm for exploratory search and an important
topic in information retrieval and semantic web communities.
A large body of recent research work addresses challenges



Figure 2. We have explored the design space of entity-based systems supporting information exploration through the development and evaluation of
multiple prototypes: (a) ExplorationWall, (b) QueryTogether, (c) SciNet/IntentRadar, and (d) RelevanceMap.

regarding the computation necessary for entity search, such as
the finding and ranking of related entities, matching entities
with occurrences in free text queries and completion of entity
lists based on given entity examples. However, as techniques
improve, it is difficult to find research addressing interaction
techniques that enable end-users to access and benefit from
such rich information in a wide variety of activities, as exam-
ples usually target very specific scenarios and tasks. Several
such entity-based exploration systems have been designed to
support expert investigators in making sense of a corpus of
documents [4, 30, 5].

As entity search becomes a reality, it creates plenty of oppor-
tunities for exploration, not only in the way relevance and
ranking are computed but in how we will interact with infor-
mation within the new paradigm. Once available information
is meaningfully structured, the information space becomes
a high-dimensional medium ready to be unfolded as explor-
ers pull its various threads in various directions and discover
content according to their needs, inspiration or chance. The
goal of entity-based fluid information exploration requires sub-
stantial thinking about the way we display and interact with
entities and come up with fundamental principles that are gen-
eralizable to any search contexts (e.g., academic publications,
social media, movie database and personal emails).

EXPLORING THE DESIGN SPACE
We have had the opportunity to explore the design space of
systems that support fluid information exploration through
the design, development and evaluation of several functional

prototypes. These prototypes each addressed different aspects
of information exploration (e.g., facilitating query formula-
tion, facilitating query refinement, providing insights from the
data and supporting collaboration). Through user studies, we
have been able to demonstrate improvement of these various
aspects over conventional approaches and identify design prin-
ciples that were responsible for these improvements. We have
also been able to observe how these principles affected user
behaviors and search strategies. The next challenge was to
use this collection of observations on individual systems, to
extract fundamental actionable principles that would outline a
paradigm for fluid information exploration.

ExplorationWall
Figure 2a. shows ExplorationWall’s interface [15]. This work
initially addresses challenges in performing exploratory search
tasks using touch-based devices, such as formulating queries
in unknown information spaces, identifying new search direc-
tions, and going through long lists of results with low infor-
mation gain. Those challenges are all made more difficult on
conventional user interfaces by the lack of physical text-input
or text-selection peripherals.

A single workspace allows for the simultaneous display of
several parallel search streams, each consisting of a vertical
organization of entities as queries and search results. Each
result set consists of multiple entities of varying types (i.e.,
documents, persons and keywords) and each entity can in
turn be used as a query or part of a query in an existing search
stream or in a new one. Entities can be easily manipulated (e.g.,



moved, stored, or combined) and can provide content to be
browsed, such as articles or insights to extend exploration(e.g.,
new topics or authors).

ExplorationWall has demonstrated substantial improvement
over regular interfaces in exploratory search tasks [15]. Results
showed a higher amount of relevant information retrieved by
participants explained by a much more active behavior and
measured in the search trail analysis in number of queries, as
well as revisit and branching rates. In the end, participants that
were given a topic to explore with which they were unfamiliar,
covered much more of all available relevant information by
making better use of multiple search sessions.

QueryTogether
QueryTogether has been designed to support exploratory
search in a collaborative and spontaneous search setting, as
shown in Figure 2b. To do so, we have adapted Explo-
rationWall’s interface so we could use it across multiple de-
vices (e.g., laptops, tablets, and large touch displays) and
support both private sharing of information and broadcasting
to all users.

The reading list has been adapted to feature saved and received
entities in a scrollable list and a user panel, which shows what
users are active in the system. Users are identified by the name
they entered at login and their status, either private if they
are using a private device or public if they act as a session
moderator on a large screen available to all participants.

Sharing is performed by dragging an entity over to the chosen
user. The recipient will instantly receive a new instance of
the sent entity in her side panel. If the side panel is closed, a
visual notification in the corner informs the user of the number
of new entities received. Next to each user label, a “Message”
icon allows the user to send a short message along with an
entity. The reading list can be filtered with respect to a chosen
collaborator and will subsequently show only entities and
documents sent to or received from that user. Filtering based
on one’s own ID will display only entities that have been saved
locally and ignore anything sent or received remotely.

SciNet/Intent Radar
SciNet/Intent Radar is a search system for information explo-
ration that builds a user intent model to better adapt returned
results to a user’s needs [8, 26]. To do so, the system en-
ables relevance feedback on a visualization of the user’s intent,
which is here visualized separately from the result list through
the use of weighted keywords, as seen in Figure 2c. The ben-
efits of a separate visualization are a higher cue density, a
comprehensive overview of the current intent, the opportunity
to provide suggestions for future intents and the practicality of
being an add-on widget to familiar search interfaces. In this
case, a user provides an initial query, which yields a regular
result list, plus a set of the most central keywords extracted
from the results, visualized on a radar (closer to the center
meaning more central). This interface offers an overview of
how the system perceives the query. The user can then adjust
the weight distribution by sliding individual keywords closer
to or farther from the center, and the result list will refresh
accordingly. Another one of the system’s important features

is the visualization in the radar’s outer ring of a variety of
secondary keywords, chosen for their diversity, providing the
user with insights about future search directions and a way to
redirect the search incrementally without having to change the
initial query. The system has been shown to improve users’
task performance in complex search tasks in which conven-
tional query-response systems failed to help users direct their
search [26].

RelevanceMap
RelevanceMap [16] provides the user with an interactive map
of the whole document space with respect to the positions
of multiple query phrases visualized as mobile markers on
a 2-D workspace, as seen in Figure 2d. The map allows for
visualization of variations in information density with respect
to elements of the query, even with large amounts of returned
documents, which enables quick evaluation of the query and
the resulting data. Browsing is performed through a pointing
gesture on the map, which re-ranks the whole document collec-
tion according to the location of interest. The corresponding
result list appears in a conventional layout next to the map.
The quick re-ranking interaction enables exploration of the
multi-dimensional data structure.

This work is another example of visualization taking advan-
tage of direct manipulation to interact with the data for sense-
making purposes. In this case, however, manipulation of the
map allows the user to determine the scope of the higher level
search task by outlining the whole document space using mul-
tiple queries and visualizing the whole set (i.e., thousands of
documents instead of a small selection). The exploration is
then performed through a re-ranking interaction over areas
of interest on the relevance map. The user can now precise
or change the focus of her exploration and refresh the result
list with a pointing gesture instead of reformulating the query.
This ability allows the user to explore large amounts of rele-
vant information without interruption, while still permitting
changes in the query at any time, thus adapting fluidly to the
user’s immediate needs.

RelevanceMap showed significant support in how users per-
ceived the information space with respect to topics of interest
and in retrieval of information relevant to complex criteria
[16].

FEATURES OF EXPLORATORY SEARCH SYSTEMS AS A
LENS
In our exploration of the design space of systems that support
information exploration, we have often taken advantage of
the work of White and Roth [31] as a frame to ground our
designs and explain their effects on user behavior and perfor-
mance. Their work includes a list of features of exploratory
search systems that exemplify essential aspects of supporting
information exploration. These features have been an impor-
tant source of inspiration as they bring attention to various
fundamental areas of exploration.

We reflect on our work through the lens of these eight features
of exploratory search systems to identify fundamental princi-
ples at work in our various systems and new opportunities for
entity-based exploration.



Support Querying and Rapid Query Refinement
Search tasks are commonly addressed by inputting queries
in a search system, which then yields a set of related results.
However, conventional text-based queries are mostly user-
defined. Relying on the user’s existing knowledge to formulate
satisfying search directions limits the range of incrementation
in the iterative exploration process. Support for querying is
commonly addressed by providing the user with ideas for new
queries or additional terms. Even auto-completing text entries
with popular queries has been shown to facilitate the querying
phase.

When entity search is available, supporting querying and query
refinement is readily achieved by augmenting conventional
expression-based querying methods through entity recommen-
dation by enabling the use of entities as queries, to provide
a set of related entities as a result. A document, a person, a
place or a movie can each be used as a query and can yield a
variety of related new entities of various types.

ExplorationWall showed how users embrace such support for
exploration over text-based querying and how that support
improves the overall exploration [15].

Facets and Metadata-Based Result Filtering
Being able to navigate a large result set according to personal
needs and preferences is a central requirement of fluid infor-
mation exploration. That is why this ability – to narrow down
such results according to a variety of criteria that are repre-
sentative of what is available in the data and complementary
enough to provide a meaningful choice of search directions –
is an important feature to support.

Facets and metadata-based parameters are an attempt to struc-
ture information by linking documents semantically through
common features (e.g., an author, a title, a date or a location).
Entity search is the ideal paradigm for result filtering, given
the richness and complexity of readily-linked data. From an
initial query entity, a system would retrieve the most central
neighboring concepts or elements and provide them as related
entities to chose from. The initial result set can then be nar-
rowed down or re-ranked with respect to the relatedness or
dependency of each element to the chosen related entity.

Each result set in ExplorationWall displays facets in the form
of recommended keywords related to the query. Adding such
keywords to the initial query narrows down the results. For
example, we have observed a user initiating a search with the
query “rosetta”. Results were related to the ancient translation
stone and the recent European mission to land a probe on a
comet. By moving the recommended keyword “probe” to
the query, the result set was then focused on the space mis-
sion. Then, after the user added the recommended keyword
“instruments” to the query, the result set became a catalog of
Rosetta’s on-board systems.

Leverage search context
A substantial part of context can already be harnessed by ac-
cessing contextual data provided by sensors (e.g., GPS signal
or personal account informations). From our interaction de-
sign perspective, we are more interested in techniques enabling

inference of context through users’ input, either explicit or
implicit.

Explicit input of context implies providing a user with the abil-
ity to critique encountered information by providing relevance
feedback that informs the system of the user’s intent. SciNet
implements such principles and has demonstrated substantial
benefits for exploratory tasks.

Implicit input of context relies on inferences made from the
user’s behavior. What information is being saved for later,
liked, or shared is often implicitly considered relevant to a
user’s interest. The songs the user put together in a playlist
and the movies she has watched or positively rated are primary
actions with implicit implications that create an opportunity to
improve any associated recommendation or retrieval process.
In systems where users can freely position selected informa-
tion on a workspace, such as RelevanceMap, the layout and
proximity factors can be used to infer a user’s intent for dis-
ambiguation and to improve the results.

Visualizations to Support Insight and Decision Making
Interactive information visualization is an important tool for
sense making. Being able to encode data visually and to play
with various parameters is a powerful way of discovering
trends, understanding relationships, gaining insight from the
data and ultimately informing decisions. Entities in knowl-
edge graphs generally make for inspiring material regarding
visualization techniques such as node-and-link diagrams and
adjacency matrices.

The challenge with information visualization is that the most
appropriate form of visualization is highly dependent on the
task and the data. In that respect, it is crucial to be able to
adapt when necessary through various techniques.

RelevanceMap uses user-driven mapping to enable multi-
aspect search. Having multiple queries distributed on a sur-
face makes it possible to consistently map a whole informa-
tion space using dimensionality-reduction techniques. Rel-
evanceMap provided users with sensible insights from the
data and with the ability to explore tradeoffs with respect to
multiple criteria, thus supporting decision-making [16].

Support Learning and Understanding
As it is necessary to offer some result-filtering ability for
the user to take better advantage of a large set of results by
narrowing down a list, it is also important to provide the
user with access to more general knowledge when necessary.
Support of learning and understanding implies that a user is
given the means to find information that is adapted to his
current level of understanding. This is typically achieved
through recommendation of related material. For example,
any modern browser or eBook reader provides the ability to
look up the definition of a word or to link a concept with its
corresponding Wikipedia entry.

More elaborate solutions consist of yielding a variety of rec-
ommended concepts or documents related to the information
at hand, which provides the user with a conceptual overview
of the topic with multiple options to gain knowledge directly
useful to understanding the information at hand.



SciNet, in addition to visualizing the current intent through
the outer rings, displays there a variety of diverse keywords,
providing the user with options for future search directions,
as a way to expand the information space without having to
change the initial query.

As a second example, in the same way that ExplorationWall
enables facets and the narrowing down of the result set through
multiple queries, similar techniques can be used to expand the
result set by adding new entities to the query, this time from
external sources (i.e., another result set or a typed expression).

Facilitate Collaboration
Collaborative information exploration is a common strategy
to tackle large information spaces through the sharing of ideas
and allocation of search tasks [11]. Collaboration can take mul-
tiple forms, with settings in which collaborators either share
or do not share the same space (i.e. colocated or distributed
collaboration), either synchronously or asynchronously.

Methods that support collaboration when searching or inter-
acting with information are very diverse but often share the
common goal of avoiding wasteful overlaps in labor between
collaborators. This problem can be tackled at the start of a
search session, through mechanisms supporting division of
labour by systems such as SearchTogether [19] or Cerchiamo
[9], which allocate defined search areas to each collaborator.
However, the same problem can also be alleviated during the
search/exploration by promoting awareness of collaborators’
activities, by providing a communication channel allowing
participants to share their progress in the form of interesting
information snippets and sources and by making their search
trails visible, as CoSense [12] and CoSearch [2] do.

Entity search creates opportunities for collaborative explo-
ration, as the information unit of reference shifts from the sole
document to a variety of references to real-world objects (e.g.,
persons, places, concepts, and expressions – or any combina-
tion of these). We can therefore envision systems in which
users have finer control over the types of information and
amounts of context saved and shared.

For example, using QueryTogether, users shared various en-
tities to facilitate task allocation and find common ground in
collocated collaborative exploratory tasks. We can imagine
implementing the exchange of whole workspaces and search
histories as a way to share not only bits of information but
whole contexts.

Histories, Workspaces, and Progress Updates
Information exploration is a sense-making activity [17]. As
such, it is open-ended, potentially long-term, and changes con-
tinuously as the information need evolves [22]. The process
often produces long and complex search trails with multiple
branches and revisits. In this context, it is important for a user
to be able to take advantage of previously encountered infor-
mation and to keep track of past activity to more efficiently
recognize new and interesting information.

Entity-centric information presents an opportunity to highlight
updated and visited information at a finer level than documents
and in overall areas of the information space. In visualizations

taking advantage of the node-and-link structure, it is possible
to use color to highlight visited or new areas in the knowledge
graph as we implemented in later versions of RelevanceMap,
where visited areas of the information space were colored in a
purple shade, as is traditional for visited links.

One of ExplorationWall’s central features is the endless hori-
zontal workspace that allows users to freely move and position
parallel streams (i.e., query plus corresponding result set) and
to create additional space in between streams. We noticed
that not only did users take advantage of such features to
thematically organize multiple search directions; their natu-
ral tendency to add new elements to the right systematically
resulted in naturally grown chronological search histories.

Support Task Management
As Information Exploration is potentially long-term, it is im-
portant for users to have the ability to interrupt and resume
their activity and to carry it over time and across devices. This
require the ability to not only save selected information but to
provide future access to whole workspaces, including histories
and information configuration with which a user has engaged.

An important criticism of the way we commonly search for in-
formation is the general ephemeral and secondary perceptions
of the search process. Users often invest a great deal of time
and effort finding information, and the process itself, including
intermediate queries and results, is often lost after an endpoint
has been reached. As we advocate for improved user control
over the search process, often at a higher interaction cost, it
is crucial to recognize its value. This improvement implies
ubiquitous computing solutions to enable the saving and re-
suming of search sessions across time, space, and devices. We
implement such features in our systems by saving workspaces
to the cloud and, in the case of QueryTogether, porting the
system to multiple platforms.

THE HYPERCUE TEMPLATE
A cue is a stimulus and a signal for action. We propose the
notion of a hypercue as a complement to the hyperlink. A
hypercue is an interactive representation of a real-world entity;
it offers affordances (i.e. possibilities for action) for the user
to explore, share and organize her thoughts. Systematic in-
spection and exploration of the design space of each feature of
exploratory search systems allowed us to identify three com-
plementary affordances that are responsible for enabling these
features and that together constitute a minimal design template
for implementing hypercues. The following template aims to
guide the creation of future interfaces for exploration without
overconstraining the design of such systems, or hindering the
ability to address specific cases through the choice of a spe-
cific form of visualization. The proposed affordances can also
be implemented in most existing media-handling applications
(e.g., in browsers and in PDF and e-book readers). From the
user’s perspective, the following template provides a base set
of rules and expectations to facilitate users’ engagement in
complex information behavior.



Figure 3. The three entity-based affordances for fluid information exploration together create opportunities for implementing each of the eight features
of exploratory search systems that White and Roth described [31].

Entity-Based Querying
Each entity or combination of entities yields various new re-
lated entities, thus providing an overview of the respective
information space.

Providing the ability to create queries through the direct ma-
nipulation of recommended entities can support query for-
mulation and facilitate query refinement. The ability to
add more entities to an initial query makes it possible to refine
it by narrowing down or expanding the result set. Adding
external entities (e.g., from somewhere else in the article or
page being consulted, or from another source) results in the
expansion of a query, thereby supporting learning and un-
derstanding. Adding an entity to the query from the result set
enables facets and metadata-based result filtering.

Entities become resources for users to express their informa-
tion interests and search intents. Sets of related or previously
observed entities can be used to collect feedback from users
on their current reliance, which would support advanced per-
sonalization in iterative user modeling where the exploration
system presents predictions of user intent through sets of en-
tities helping the user to discover and formulate her current
intent.

Modern browsers and operating systems already implement
affordances to inspect the definition of an expression, its cor-
responding Wikipedia entry or related search engine results.
Such affordance is here generalized, using entity search to
yield a crop of related entities from any selected object (e.g.,
an expression, article, or link).

Entity Mapping
Entities can be moved around, and users are provided with the
spatial freedom to organize the entities of interest in a layout
that reflects their understanding and their mental representa-
tion of the information space.

Spatial organization of thoughts is a common behavior. We
draw mind maps, we make piles of documents, we organize
sticky notes, and store documents within directories or un-
der consistent tags. Sense-making is an important part of
exploratory search [31], and as such it relies on users build-
ing a mental representation of the state of the world (i.e., the
information space at hand) and then iteratively contrasting

this representation against the real world (i.e., new informa-
tion) to update it and acquire a progressively more accurate
understanding of the information space [27].

Entity mapping provides support for mind mapping, which
supports learning and understanding. It provides an im-
plicit input channel for leveraging the search context. It also
allows for creating visualizations that support insight and
decision-making by enabling multi-aspect search, as well
as for addressing the need for histories, workspaces, and
progress updates.

Entity Storing and Sharing
Entities and groups of entities can be easily saved for later use
and easily shared with collaborators.

Documents often serve as units of information. Users search
for, bookmark, and share such documents. Such actions are not
sufficient, however. The user often forgets the intent behind the
bookmarking and thus loses the utility of the stored document.
Some additional action is required, such as giving each book-
mark a context-relevant title or organizing bookmarks within
theme-specific directories. Sharing requires the use of messag-
ing channels, as text messages are necessary to convey context
and intent. Entity-centric information enables the use of vari-
able and personalized units of information. Users can search
for, store, and share references to persons, media, excerpts,
and organizations. Taking advantage of affordances 1 and 2,
the exchange of information involves potentially sharing – and
collaborating on – whole contexts in the form of organized
entities, which facilitates collaboration. The same principle
gives access to these contexts across devices, providing flex-
ible support for task management and enabling histories,
workspaces, and progress updates. Stored or saved infor-
mation also provides an implicit input channel for leveraging
the search context.

Summary
Figure 3 shows how the hypercue template, which is based on
the three proposed design principles above, creates opportu-
nities for addressing each of the eight features of exploratory
search systems.



Figure 4. InnovationMap is designed for innovation exploration and discovery, and implements the three principles of the Hypercue template. (a) A
user inspects the entity of a researcher in the right panel. If it is of interest to her, she drags it towards the map. (b) The right panel now displays the
search results corresponding to the (blue) cell selected by the user, which has two entities as a compound query. As results are saved in the cloud, the
user can resume her exploration later on a different device.

Example
To illustrate our approach to designing systems that support
information exploration, and to show the hypercue’s role in
enabling relevant features, we describe and discuss the case of
InnovationMap, a system that was designed following these
principles. It is currently being implemented in partnership
with the University of Helsinki to support innovation explo-
ration and discovery.

User Interface
The workspace consists of a map, with a panel on the right,
as seen on Figure 4. The map is based on a grid of hexagonal
cells. The scale of the map is changeable through the use of
the mouse wheel or through pinch gestures. The companion
panel has a text-input field at the top, inviting typed queries,
and the corresponding result set is displayed under it. Results
consists of entities of various types (i.e., documents, persons,
workplaces and topics). An initial text-based query yields a
ranked set of mixed-type entities. Each entity can be inspected
with a click or a tap, at which point the panel displays all
the information about the selected entity (i.e., the full meta-
data) to provide a preview of the content – and access to it, if
applicable, through available links such as dedicated websites,
Wikipedia entries, or social media contacts. Each entity can
also be dragged towards the map, where it will position itself
at an intersection of the grid. The darker cells on the map
are representations of the various result sets yielded from
all adjacent entities. Tapping on a cell highlights it in blue,
signifying that the corresponding result set is displayed in the
panel. By dragging more entities to the map, users can search
for information related to up to six entities for each cell. Users
can freely drag entities to other parts of the map and can thus
explore the information space in multiple directions.

InnovationMap does not include methods to share specific
entities or entity structures with an other users. However, it is
designed to remotely save the state of each session for later
access, potentially on another device. As a result, even without
features designed specifically for collaboration, sharing access
to a session with another user is possible, thus allowing users to
provide others with the information they have found, including

the context of their multiple search directions and points of
interests.

Scenario
An innovation manager for a foreign company is looking for
partnership opportunities in Helsinki. She uses Innovation-
Map, an online tool for exploring research work, provided by
the local university. Although she does not have academic
expertise, she starts by inputting an umbrella term that roughly
covers her fields of interests (i.e., “Big Data”). The system re-
turns a variety of related fields, as well as keywords, academic
articles, patents, and names of researchers and entrepreneurs,
all of which are representative of the local research work. She
consults the profile of some of the recommended persons and
inspects a few recommended fields. Soon, she’s able to drag
“Human Computer Interaction (HCI)” towards the map, thus
refreshing the search results. She then adds an article that
describes a user-modeling technique for search systems. The
results now show a startup based on the technology of interest,
among other related elements. Inspection of the entity pro-
vides necessary information on the young company, including
a link to its website and contact information. In parallel, she
drags “Information Visualization” to the map, next to “Human
Computer Interaction (HCI)”, and starts exploring the inter-
section of these topics in the information space (in a separate
cell). Progressively, and without having to recall any technical
terminology or read through pages of material unrelated to the
topic of interest, she not only collects useful information but
also builds a representation of the whole process, thus gain-
ing an understanding of the information space that accurately
reflects the data.

DISCUSSION AND CONCLUSIONS
The present template consists of fundamental principles aimed
at guiding the design of future systems and supporting informa-
tion exploration while also limiting the number of constraints
imposed on the overall design space. In this section we discuss
aspects that are not addressed by the template, and attempt to
outline the remaining design space.

Hypercues are designed to be identified and defined by users
(although they could also be recommended within contents).



For instance, in the latest iteration of its operating system for
tablets (iOS 11), Apple has introduced a generalized ability
to drag and drop. Pictures, text snippets, news articles, hyper-
links, and other bit of information pop out of the environment
with a gesture of the finger, thus becoming interactive objects
that can be dragged across applications and dropped into mes-
sages, notes, or cloud-based storage. This ability lets the user
interact with predefined object and with user-defined selec-
tions, and it offers an ideal interactive base for the integration
of the affordances proposed in this paper.

Although the template does not provide information about the
shape and size of displayed hypercues, it is useful to discuss
the requirements and provide some recommendations based
on our experience. The first requirements of the hypercue
marker is for the represented entity to be identifiable and
placed in a space that allows it to be moved and positioned in
relation to other entities. A constant challenge when designing
entity-based interfaces balancing the amount of information
conveyed through the entity marker against the number of
entities that can be comfortably displayed. In any case, it is
necessary to provide the option to quickly inspect the entity,
so that the user can access a comprehensive overview of the
entity through linked content and related material. However, it
is also essential to show enough information up-front to trigger
the user’s recognition and incite her interest. Modern desktop-
based operating systems offer a good model for representing
files and directories as manipulable objects using an icon and
one or two short lines of text. The most useful information
depends on the task and on the information space. Although
movies are usually displayed with a poster, a title and a release
year, finding the most relevant movie in a set could depend
on other information, such as the cast or the rating. Likewise,
finding useful academic articles can require variable criteria
(e.g., authors, venue or citations). The solution might lie in
a balance between user-defined preferences and automated,
context-sensitive, and adaptive interface settings.

These guidelines’ reliance on direct manipulation and spatial
layouts makes the hypercue a potentially interesting candidate
for integration with the physical world through playful tangi-
ble interactions. Registering an entity or a set of entities as
physical objects allows users to combine and share such ob-
jects to playfully discover information through machine vision
or sensing surfaces.

The hypercue template consists of a minimal set of affordances
for the interactive representation of real-world entities. It
ensures that all important features for supporting exploratory
search can be addressed while still leaving enough design
space to facilitate integration within a variety of systems, and it
baseline rules and expectations to facilitate users’ engagement
in complex search behavior. The template has various potential
implications regarding how people search for information. An
important implication is that all interactions proposed in the
present work require substantially more effort from the user
than present methods require, as users have grown accustomed
to content feeds and to the simplicity and immediacy of today’s
search engines. We advocate information practices in which
users are more active, and we posit that this is the cost of

providing greater transparency and control over information.
However, this cost can be mitigated through fluidity by having
every interaction serve an informational goal and letting the
user become truly absorbed by the task, thus rewarding her
with persistent and constructive search sessions that remain
useful in the long run.

In this work, we propose guidelines that are generalizable to
every information space. We can imagine that, in the future, a
user’s search interface of choice will be independent from the
data being explored. As a result, a user could apply one tool to
discover information of interest within news posts, academic
articles, music, movies, and social media posts, thus increasing
the potential for serendipity and creative solutions.
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